Directory

CHAPT	R 1 SAFETY REM	IINDER	1
1.1	Safety Notes		1
1.2	Precautions for	storage	2
1.3	Precautions for	transportation	2
1.4	Notes on install	ation	3
1.5	Wiring Precauti	ons	4
1.6	runtime conside	erations	6
1.7	Maintenance ar	nd Inspection Precautions	7
СНАРТ	R 2 PRODUCT IN	IFORMATION	8
2.1	Drive form facto	or	8
2	1.1 Installation	dimensions of E1, E2, E3, EA structure drives	9
		cription	
2	2.1 E structure s	ervo drive nameplate	13
2	2.2 Motor name	plate	14
2.3	Drive Specificat	ions	16
2.4	Drive selection		19
2	4.1 E-structure 2	20V driver selection	19
2	4.2 E structure 3	80V driver selection	19
2.5	Meet the stand	ards	20
СНАРТ	R 3 WIRING		21
3.1	Drive overview		21
3	1.1 E structure	servo driver	21
3.2	Main circuit wir	ing	22
3	2.1 Main circu	it terminal names and functions	22
3	2.2 Typical Ma	in Circuit Wiring Example	23
3	2.3 Main circu	it wiring precautions	25
3.3	Encoder signal	wiring	26
3	3.1 Pin assignr	nent of the encoder connection port (CN2)	26
3	3.2 The pin de	finition of the encoder connection port (CN2)	26
3.4	Input/Output Si	gnal Wiring	27
3	4.1 Pin assignr	nent of input/output signal port (CN3)	27
3	4.2 Pin definiti	on and function of input/output signal port (CN3)	27
3	4.3 Position co	mmand input wiring example	28
3.5	Communication	ı signal wiring	31
3	5.1 Pin assignr	nent and definition of VC310 servo E structure communication port	31
3	5.2 E structure	monitoring port pin assignment and definition	32
3.6	Wiring suggesti	ons and anti-interference countermeasures	33
2	6.1 Wiring Rec	ommandations	33

I

3.6.2	Anti-interference countermeasures	34
CHAPTER 4	PANEL DISPLAY AND KEYBOARD OPERATION	37
4.1 Intr	oduction to panel composition	37
4.1.1	E Structure Servo Driver Panel	37
4.2 pan	el operation mode	37
4.2.1	E Structure Servo Driver Panel	37
4.3 Puls	se servo status display	38
4.4 Par	ameter read and write	38
4.4.1	Display rules for numbers of different lengths	39
4.4.2	Parameter setting steps	39
4.5 Fun	ctional operation	40
4.5.1	Fn000 reset drive function	40
4.5.2	Fn001 Jog test run function	41
4.5.3	Fn002 Restore all parameters to factory defaults	41
4.5.4	Fn003 Download program reset	42
4.5.5	Fn004 Learn asynchronous motor encoder parameters	43
4.5.6	Fn005 Learn related parameters of synchronous motor encoder	43
4.5.7	Fn006 Single parameter gain adjustment	44
4.5.8	Fn007 Learning load inertia	44
4.5.9	Fn008 update FPGA program reset	45
4.5.10	Fn009 restores all factory parameters except P00 and P01 parameter groups	45
4.5.11	Fn010 backup all parameters	45
4.5.12	·	
4.5.13	Fn012 restart RS232 communication	46
4.5.14	In Fn013 full-closed loop mode, the polarity of self-learning feedback and the number	of
pulses of th	ne second encoder corresponding to one rotation of the motor	46
4.5.15	Fn014 clears the absolute value encoder circle value (only for Nikon 24-bit encoder)	47
4.5.16	Fn016 Self-learning synchronous motor current loop PI gain	47
4.6 Var	iable monitoring	47
CHAPTER 5	SERVO CONTROL MODE	49
5.1 Bas	ic parameter setting	50
5.1.1	control mode	50
5.1.2	Servo start and stop	51
5.1.3	Servo braking method	52
5.1.4	command reverse	53
5.2 pos	ition mode	53
5.2.1	Position command source and direction selection	54
5.2.2	The position command comes from the pulse command	55
5.2.3	The position command is derived from the multi-segment position command plan	57
5.2.4	Electronic gear ratio	78
5.2.5	Electronic gear ratio smooth switching function	80

5	.2.6	Position command filter function	80
5	5.2.7	Positioning complete/proximity function	83
5	.2.8	Pulse frequency division output function	85
5	.2.9	Z point pulse output function	86
5	.2.10	Homing	87
5	.2.11	Interrupt fixed length function	108
5	.2.12	4th power position curve function	. 115
5	.2.13	Full closed loop function	116
5	.2.14	Torque limit function	120
5	.2.15	Travel limit function	. 120
5	.2.16	Internal implementation block diagram of position mode	122
5	.2.17	Typical Wiring Diagram for Position Mode	. 123
5	.2.18	Example of position mode XY pulse (pulse + direction) moving position	. 126
5.3	spee	d mode	. 127
5	.3.1	Speed command source	127
5	.3.2	Multi-stage speed mode	130
5	5.3.3	UP/DOWN speed mode	142
5	.3.4	Ramp control and speed command filtering	. 143
5	.3.5	speed limit	145
5	.3.6	Torque limit	148
5	3.3.7	Zero position fixation function	150
5	3.3.8	Other functions	152
5	.3.9	Internal operation block diagram of speed mode	160
5	.3.10	Typical Wiring Diagram for Speed Mode	. 161
5	.3.11	Servo uses analog quantity to control the speed	. 163
5.4	Torq	ue mode	165
5	.4.1	Torque command source	165
5	.4.2	Torque limiting	167
5	.4.3	speed limit	171
5	.4.4	Torque reaches output	175
5	.4.5	Small torque jitter suppression	177
5	.4.6	Internal block diagram of torque mode	178
5	.4.7	Typical wiring diagram of torque mode	179
CHAPT	ER 6 II	NPUTS AND OUTPUTS FUNCTION	181
6.1	Entit	y DI/DO function	181
6.2	Virtu	al DI/DO function	193
6.3	Anal	og input and analog output AI/AO function	202
6		Analog input Al	
6	5.3.2	Analog output AO	208
CHAPT	ER 7 A	UXILIARY FUNCTIONS	211
7.1	Faul	t protection	211
,	- 441	·	

7.1.1 Fault Downtime	211
7.1.2 All faults	213
7.1.3 Troubleshooting	226
7.1.4 Motor overload protection	242
7.1.5 Braking resistor overload protection	244
7.1.6 Motor overheat protection	245
7.1.7 Motor phase loss protection	246
7.2 Holding brake output function	246
7.2.1 Braking process	247
7.3 Description of dynamic braking function	250
7.4 Introduction of STO safety terminal	250
7.5 Instructions for the use of absolute value encoder	252
7.6 Other auxiliary functions	253
7.6.1 Internal flip-flop function	253
7.6.2 Software counter function	254
7.6.3 U disk update/save parameter function	256
CHAPTER 8 ADJUSTMENT	257
8.1 Control loop gain adjustment	257
8.1.1 Current loop PI gain adjustment	262
8.1.2 Speed loop PI gain adjustment	
8.1.3 Position loop P gain adjustment	
8.1.4 List of parameters that need to be adjusted in different gain gain adjustment modes	267
8.2 Feedforward gain adjustment	268
8.2.1 speed feedforward	268
8.2.2 Torque feedforward	269
8.3 Filter time adjustment	269
8.4 Load torque compensation function	270
8.5 Mechanical resonance suppression function	271
8.6 Low frequency vibration suppression	272
8.7 Model Predictive Control Capability	273
CHAPTER 9 MODBUS COMMUNICATION	275
9.1 Modbus wiring requirement	275
9.2 Modbus parameter setting steps	275
9.3 Function codes supported by Modbus	277
9.3.1 Function code 1 or function code 2 (read bit)	278
9.3.2 Function code 3 or function code 4 (read register)	280
9.3.3 Function code 5 (write bit)	280
9.3.4 Function code 6 (write single word register)	283
9.3.5 Function code 16 (write double word register)	284
CHAPTER 10 PARAMETER LIST	286

10.1	POC	group parameters - motor and encoder parameters	286
10.2	P01	group parameters - driver hardware parameters	298
10.3	P02	group parameters - basic control parameters	304
10.4	P03	Group parameter - position mode parameter	311
10.5	P04	group parameter - speed mode related parameters	323
10.6	P05	group parameter - torque mode related parameters	328
10.7	P06	group parameter -Inputs and Outputs Function	333
10.8	P07	group parameters - loop control parameters	347
10.9	P08	group parameters - communication parameters	360
10.10	0 PC	9 group parameters - advanced debugging parameters	366
10.1	1 P1	.0 group parameters - fault protection parameters	373
10.12	2 P1	1 group parameters - multi-speed parameters	388
10.13	3 P1	.2 group parameters - virtual DI DO parameters	399
10.1	4 P1	3 group parameters - multi-segment position parameters	413
СНАРТЕ	ER 11	COMMISSIONING	425
11.1	Fac	tory debugging matching motor steps	425
11.2	Loc	ation Mode Debugging Guidelines	427
13	1.2.1	Position Mode Block Diagram	427
13	1.2.2	Preliminary analysis of the curve	428
13	1.2.3	Current loop understanding and tuning	429
1:	1.2.4	Speed loop understanding and tuning	432
13	1.2.5	Position loop understanding and adjustment	434
СНАРТЕ	ER 12	INTRODUCTION TO CANOPEN PROTOCOL	435
12.1	Intro	duction to the CAN physical layer	435
12.2	Obje	et Dictionary	435
12.3	Intro	duction to CiA301 Protocol	436
12.4	NMT	sub-protocol	438
12	2.4.1	node control protocol	438
12	2.4.2	NMT error control	440
12.5	SDO s	sub-protocol	442
12	2.5.1	SDO transfer process	442
12	2.5.2	Data frame format for SDO accelerated transmission	442
12	2.5.3	Example of SDO frame format	444
12.6	PDO :	Sub-Protocol	444
12	2.6.1	PDO transfer process	444
12	2.6.2	PDO related parameters	445
12	2.6.3	TPDO frame format	447
12	2.6.4	RPDO frame format	447
12	2.6.5	PDO configuration example	447
12	2.6.6	Synchronous SYNC Sub-Protocol	448
127	Ohio	ets related to CiA201 protocol	110

12.7.1	Object 1000h: Device Type	448
12.7.2	Object 1001h: Error register	448
12.7.3	Object 1005h: COB-ID synchronization message	449
12.7.4	Object 1006h: Communication cycle	449
12.7.5	Object 1008h: Manufacturer Device Name	449
12.7.6	Object 1009h: Manufacturer's hardware version	450
12.7.7	Object 100Ah: Manufacturer's software version	450
12.7.8	Object 100Ch: Guardianship Period	450
12.7.9	Object 100Dh: Life cycle Factor	451
12.7.10	Object 1014h: EMCY COB-ID	451
12.7.11	L Object 1017h: Producer Heartbeat Period	452
12.7.12	2 Object 1200h: SDO server parameters	452
12.7.13	3 Object 1400h~1403h: Communication parameters of RPDO1~RPDO4	453
12.7.14	4 Object 1800h~1803h: Communication parameters of TPDO1~TPDO4	455
12.7.15	5 Object 1600h~1603h: Mapping parameters of RPDO1~RPDO4	457
12.7.16	5 Objects 1A00h~1A03h: mapping parameters of TPDO1~TPDO4	457
CHAPTER 13	CANOPEN CONTROL MODE	459
12 1 Drive	state control	460
	State switching mechanism	
	Status Display	
	Related objects	
	• Mode Control	
	tion factors and other common objects	
	our position mode	
	Contour position mode setting process	
	Contour position mode status output	
	Related objects in outline position mode	
	our speed mode	
	. Contour velocity mode implementation block diagram	
	Contour speed mode setting process	
	Contour speed mode status output	
	Contour speed mode related objects	
13.5.5	Zero return mode setting process	481
13.5.6	Home mode related status output	481
13.5.7	Return to zero mode related objects	482
13.6 Inter	polated position mode	483
13.6.1	Interpolation position mode implementation block diagram	483
13.6.2	Interpolation position mode setting flow	484
13.6.3	Interpolation position mode status output	485
13.6.4	Interpolated Position Mode Related Objects	485
13.7 Cont	our torque mode	487
13.7.1	Contour torque mode implementation block diagram	487

	_	\sim	n	_	_
VΙ	НΊ		П		К

VC310 series servo driver instruction manual

VERSION UPDATE RECORD	. 491
13.8.1 The related objects are as follows	.489
13.8 Torque limit	. 488
13.7.3 Contour torque mode related objects	. 487
13.7.2 Profile torque mode setting process	.487

Chapter 1 safety reminder

This chapter describes important matters that users must observe, including product identification, storage, transportation, installation, wiring, operation, and inspection.

1.1 Safety Notes

- Turn off the power for more than 5 minutes before disassembling and installing the driver, otherwise it may cause electric shock due to residual voltage.
- Do not disassemble or install the driver when the servo unit is powered on, otherwise it may cause electric shock, stop the product or burn it out.
- Please never touch the inside of the servo drive, otherwise it may cause electric shock.
- When the power is turned on and for a period of time after the power is cut off, the heat sink of the servo drive, the external braking resistor, the servo motor, etc. may be high temperature, please do not touch, otherwise it may cause burns. To prevent inadvertent contact with hands or parts (such as cables, etc.), take safety measures such as installing a cover.
- Please use the power supply specification that conforms to the product for the power supply of the servo drive, otherwise it may cause the product to burn out, electric shock or fire.
- Between the power supply and the main circuit power supply of the servo drive, be sure to connect a magnetic contactor and a non-fuse circuit breaker. Otherwise, when the servo drive fails, the large current cannot be cut off, resulting in a fire.
- The ground terminal of the servo drive must be grounded, otherwise it may cause electric shock.
- Unless you are a professional, do not set up, disassemble, or repair the product, as this may result in electric shock or injury.
- Please never modify this product, otherwise injury or mechanical damage may result.
- Do not damage or pull the cable too hard, do not subject the cable to excessive force, do not place it under heavy objects or cause it to be pinched, otherwise it will cause malfunction, damage, and electric shock.
- When the servo motor is running, please never touch its rotating parts, otherwise you may be injured.
- Do not use this product near places where it will be splashed with water, corrosive environments, flammable gas environments and combustibles, otherwise it may cause electric shock or fire.
 - Please install the servo drive, servo motor and external braking resistor on

incombustible materials, otherwise it may cause fire.

- In the servo driver and servo motor, do not mix flammable foreign objects such as oil and grease, and conductive foreign objects such as screws and metal pieces, otherwise it may cause a fire.
- When installing it on the supporting machine and starting to run, please put the servo motor in a state where it can be stopped at any time in advance, otherwise it may cause injury.
- In the state where the servo motor and the machine are connected, if an operation error occurs, it will not only cause mechanical damage, but may also lead to personal accidents.
- Install an external emergency stop device to ensure that the power is turned off and operation is stopped immediately when an error occurs.
- Please use a noise filter, etc. to reduce the influence of electromagnetic interference, otherwise it will cause electromagnetic interference to the electronic devices used near the servo unit.
 - Servo unit and servo motor should be used in the specified combination.

1.2 Precautions for storage

- Do not place too much of this product on top of one another, as this may cause injury or malfunction.
 - Please store in the following environment:
 - Places without direct sunlight;
 - Places where the ambient temperature is within the range of -20° C to $+65^{\circ}$ C;
- The relative humidity is in the range of 0% to 95%, and there is no condensation;
 - Places without water droplets, steam, dust and oily dust;
 - Places without high-heating devices;
 - Non-corrosive, flammable gas and liquid places;
 - Places that are not easy to be splashed with water, oil, medicines, etc.;
 - Places that will not be exposed to radioactive radiation;
 - Strong and vibration-free place;
 - A place without electromagnetic noise interference.

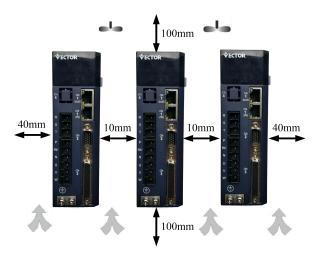
Storage in an environment other than the above may result in product failure or damage.

1.3 Precautions for transportation

- When operating the servo unit and servo motor, be careful of sharp parts such as the corners of the equipment, otherwise injury may result.
- Do not place too much of this product on top of one another, as this may cause injury or malfunction.
 - This is a precision device, please do not drop it or apply strong impact to it,

otherwise it will cause malfunction or damage.

• Do not apply shock to the connector part, otherwise it will cause poor connection or malfunction.


1.4 Notes on installation

- Please install the drive on a dry and sturdy platform, maintain good ventilation and heat dissipation, and maintain a good grounding during installation.
 - Please install it in the prescribed direction to avoid malfunction.

• When installing, please make sure to keep the specified distance between the servo drive and the inner surface of the electric cabinet and other machines, otherwise it will cause fire or failure.

- When installing, do not block the air inlet and air outlet, and do not allow foreign objects to enter the product, otherwise it may cause malfunction or fire due to the aging of the internal components.
- Do not place heavy objects on or on top of this product, as this may result in injury.
 - Please install in the following environment:
 - Places without direct sunlight;
 - Locations where the ambient temperature is in the range of 0° C to 55° C;
 - •The relative humidity is in the range of 0% to 95%, and there is no condensation;
 - Places without water droplets, steam, dust and oily dust;
 - Places without high-heating devices;
 - Non-corrosive, flammable gas and liquid places;
 - Places that are not easy to be splashed with water, oil, medicines, etc.;
 - Places that will not be exposed to radioactive radiation;
 - A firm and vibration-free place;
 - A place without electromagnetic noise interference.

Installation in an environment other than the above may result in product failure or damage.

1.5 Wiring Precautions

- It is recommended not to use single-phase 220V main power supply, as the electrolytic capacitor may be damaged due to lack of phase.
- Do not change the wiring while the power is on, otherwise electric shock or injury may result.
- Please have professional technicians perform wiring or inspection operations, otherwise it will cause electric shock or product failure.
- Please check the wiring and power supply carefully. The output circuit may be short-circuited due to incorrect wiring or the application of different voltages. When

the above fault occurs, the brake does not operate, so it may cause mechanical damage or personal injury.

- Do not connect the input power cable to the U, V, W terminals of the drive, otherwise the servo drive will be damaged.
- When wiring, do not pass the power cable and the signal cable through the same pipe, and do not bundle them together. The distance between the two should be more than 30cm to avoid interference.
- The ground terminal of the driver must be connected to the ground to avoid leakage and reduce the interference to the system, and the diameter of the ground wire should be the same or larger than that of the power supply wire.
- When connecting the AC power supply and DC power supply to the servo unit, please connect to the designated terminals, otherwise it may cause malfunction or fire.
- For the wiring length, the maximum length of the command input line is 3m, and the maximum length of the encoder line is 20m.
- Please use twisted-pair shielded cables for signal cables and encoder cables, and the shielding layer is grounded at one end.
- The U, V, W terminals of the driver and the U, V, W terminals of the motor should be connected one by one according to their names. If they are connected incorrectly, the motor cannot run normally.
- Products that share the DC bus should have a varistor, and the wiring should be secure.
- Please wait at least 5 minutes after the power is turned off before performing the inspection. Even if the power is turned off, high voltage may still remain inside the servo drive. Therefore, within 5 minutes after the power is turned off, do not touch the power terminals, otherwise it will cause electric shock.
- Do not turn on/off the power frequently. When it is necessary to repeatedly turn on/off the power continuously, please control it to less than once a minute. Since the power supply part of the servo driver has a capacitor, a large charging current will flow (charging time 0.2 seconds) when the power is turned ON/OFF. Therefore, if the power is turned on/off frequently, the performance of the main circuit components inside the servo drive will be degraded.
- Do not power on when the terminal block screws or cables are loose, otherwise it may cause fire.
- In the following places, please take appropriate shielding measures, otherwise it may cause damage to the machine:
 - Places where there is interference due to static electricity;
 - Places where strong electric or magnetic fields are generated;
 - places where radiation exposure may occur;
 - Places with power lines nearby.

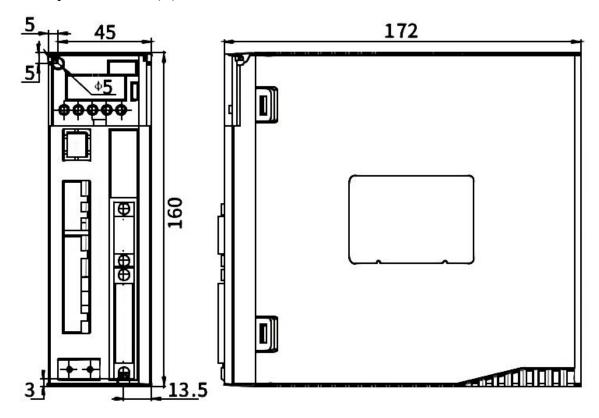
1.6 runtime considerations

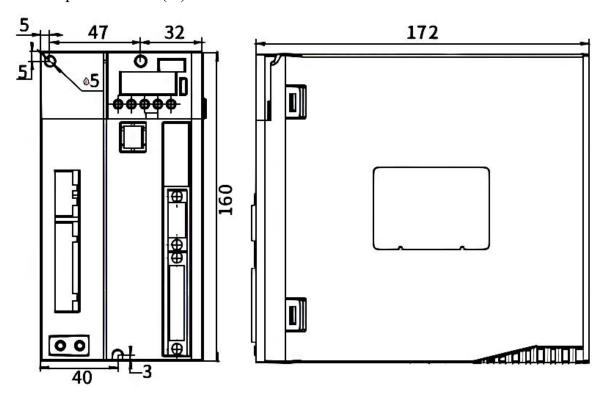
- During the test run, in order to prevent accidents, please run the servo motor with no load (not connected to the transmission shaft), otherwise it may cause injury.
- When it is installed on the matching machine and starts to run, please set the user parameters that match the machine in advance. If the operation is started without parameter setting, it may cause loss of control or malfunction of the machine.
- To avoid accidents, please install a limit switch or stopper at the end of the moving part of the machine, otherwise it will cause damage to the machine or injury to personnel.
- Do not make extreme changes to the parameter settings, otherwise it will cause unstable movement, mechanical damage or injury.
- When the power is turned on or the power is just cut off, the heat sink, external braking resistor, motor, etc. of the servo drive may be in a high temperature state. Please do not touch it, otherwise it may cause burns.
- When using a servo motor on a vertical axis, please install a safety device to prevent the workpiece from falling in the state of alarm, overtravel, etc. In addition, please set the stop setting of the servo lock when overtravel occurs, otherwise the workpiece may drop in the overtravel state.
- Do not enter the operating range of the machine during operation, otherwise injury may result.
- Do not touch the servo motor and the moving parts of the machine during operation, otherwise injury may result.
- Install a safety system to ensure safety even in the event of a signal line disconnection or other failure. For example, when the forward over-travel switch (P-OT) and reverse over-travel switch (N-OT) signals are disconnected at the factory settings, a safety action is performed.
 - When turning off the power, be sure to set the servo OFF status.
- Do not turn on/off the power frequently. After starting the actual operation, the interval between power ON/OFF should be more than 1 hour, otherwise the components inside the servo unit will be aged prematurely.
- When an alarm occurs, reset the alarm after eliminating the cause and ensuring safety, and restart the operation. Otherwise, injury may occur.
- Do not use the brake of the brake motor for normal braking, otherwise it may cause malfunction.

1.7 Maintenance and Inspection Precautions

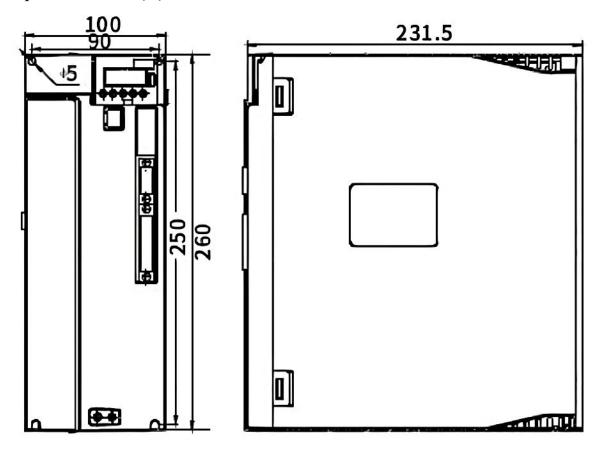
- Do not change the wiring while the power is on. Doing so may result in electric shock or injury.
- Please have professional technicians perform wiring or inspection operations, otherwise it will cause electric shock or product failure.
- Please wait at least 5 minutes after the power is turned off before performing the inspection. Even if the power is turned off, high voltage may still remain inside the servo drive. Therefore, within 5 minutes after the power is turned off, do not touch the power terminals, otherwise it will cause electric shock.
- When replacing the servo drive, please back up the user parameters of the servo drive to be replaced before replacing, and transfer the backup to the new servo drive, and then restart the operation, otherwise the machine may be damaged.

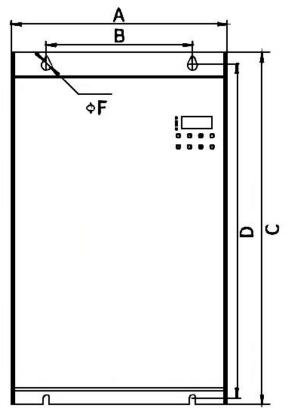
Chapter 2 Product Information

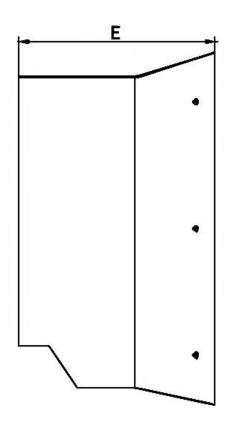

2.1 Drive form factor


E structure CANopen bus servo drive

2.1.1 Installation dimensions of E1, E2, E3, EA structure drives


E1 adaptation current (A) 3-6


E2 Adapter Current (A) 7-12



E3 adaptation current (A) 16-32

EA installation dimensions

EA installation dimension drawing comparison table

211 instantation anniension arawing comparison table									
Current (A)	38-45	60	75-90	110-170					
A	220	226	262	305					
В	149	150	160	160					
С	363	439	499	605					
D	349	428	488	594					
Е	200	250	251	236					
F	5.5	6.5	6.5	6.5					

2.2 Nameplate Description

2.2.1 E structure servo drive nameplate

VC series nameplate description:

VEC-VCXXX-00323-E

VEC	Trademarks									
VC	VC-Series									
ххх	Serial No.	310 CANopen bus type								
00323	Drive rated	Nameplate logo	00323 00623 00733 01243							
	current	rated current	003	3.0A	006	6.0A	007	7.0A	012	12.0A
	voltage	Rated voltage	2	220V	2	220V	3	380V	4	440V
		Single/Dual /Three Phase	3	Three -phas e	3	Thre e-ph ase	3	Thre e-ph ase	3	Three-p hase
E	Structure type									

2.2.2 Motor nameplate

200FMB-LR4015E33F1-MF2*

200	Square flange size (mm)							
		Mark		nethod				
F	cooling method	F		ling				
		Default		I	natural	cold		
			mark					
MB					ME			
	Product Series				MB			
IVID	Floudet Selles				ME1			
					MD			
					МН			
	Moment of	Mark			inert			
L	Wioment of	L			low ine	ertia		
_	inertia	M		m	edium i	inertia		
	THE CIG	Н			high In	ertia		
		Mark	Specification					
	rated power	R40	0.4KW					
R40		1R5			1.5K	W		
IX-TO		003	3KW					
		7R5	7.5KW					
		020	20KW					
		Mark	Rated speed					
		10	1000RPM					
15	Rated speed	15	1500RPM					
13	Ratea speed	20	2000RPM					
		25			2500R	PM		
		30	3000RPM					
	Installation	Mark		5	Specific			
Е	installation	Α			IMB			
_	method	D			IMB			
	IIICUIOG	E			IMB3	85		
		Mark		S	Specific	ation		
33	Voltage level	23	2	220V	3	Three-phase power		
33		33	3	380V	3	Three-phase power		

		43	4	440V	3	Three-phase			
						power			
		Mark		Spe	ecifica	ation			
F		F		Without brake, with oil seal					
	Brake	В		Built-in holdi	ng br	ake has oil seal			
	Бгаке	Α		No holding	g bral	ce no oil seal			
		С	W	ith holding bra	ake a	nd without oil seal			
	Shaft connection	Mark		specification					
1	Shart connection	1		Or	otical	axis			
'	method	Default		Keyed threaded hole					
		Mark		Enco	oder :	Signal			
		M		Incremental p	hoto	electric encoder			
M		N	Wire-saving photoelectric encoder						
	Encoder type	Х	resolver encoder						
		В	23-bit multi-turn absolute value						
			photoelectric encoder						
		C1A	17-bit single-turn absolute value						
			magnetic encoder						
		C2A	17-bit multi-turn absolute value magne						
				ler					
		S	24-bit multi-turn absolute value						
			photoelectric encoder						
		Mark	Specification						
	Number of	F1	1024C/T			C/T			
		F2	2500C/T						
F2	encoder lines	F5			5000C				
		F6			5000C	C/T			
				Mark					
				M					
				LA					
	Factory logo			Z					
*				D					
				U					
				С					
		N							

2.3 Drive Specifications

	Project	Description
		Single-phase/three-phase full-bridge rectification
Voltage	control mode	SVPWM drive
		(Input voltage range AC 220V/380V±10%)
		Incremental photoelectric encoder
		Wire-saving photoelectric encoder;
		17-bit single-turn Tamagawa absolute value encoder;
		23-bit single-turn Tamagawa absolute value encoder;
Encoder	encoder feedback	17-bit multi-turn Tamagawa absolute value encoder;
Effecter	chedder recuback	23-bit multi-turn Tamagawa absolute value encoder;
		24-bit Nikon absolute value encoder;
		Resolver (requires angle-resolving card), the principle of
		angle-resolving card: convert resolver signal to non-wire-saving
		signal.
	Pulse type	Differential input, open collector
	Frequency Range	Differential input: 0-500kHz, pulse width greater than 1us
	Frequency Kange	Open collector circuit: 0-300kHz, pulse width greater than 2.5us
Pulse input		
i disc input	Pulse Mode	pulse+direction;
		AB pulse;
		CW+CCW;
	Pulse type	Differential input
High-	Frequency Range	0~4MHz
speed		pulse+direction;
pulse input	pulse mode	AB pulses;
		CW+CCW;
	voltage range	-10V to 10V
Analog	Input impedance	10k Ω
input	Maximum frequency	1.5kHz
Analog	voltage range	-10V to 10V
output	Update Cycle	1ms
DI/DO Interface Type		NPN/PNP
Communica	<u> </u>	CANopen/MODBUS
Brake handl	ing	External Brake Resistor
fault respons		Dynamic braking, deceleration stop, freewheel stop
raan response		

Protective function		Overcurrent, overvoltage, undervoltage, overload, locked rotor, etc.		
auxiliary fu	nction	Gain adjustment, alarm record, jog operation		
	Instruction input method	 pulse command internal position planning Plan according to target position, speed, acceleration and deceleration time Trapezoidal speed curve cubic velocity curve Absolute/relative command mode 		
position	command smooth way	low pass filter/median filter		
mode	Electronic gear ratio	N/M;(M=1~2147483647,N=1~2147483647)		
	Torque limit	Internal torque limit Analog torque limit		
	Feedforward compensation	Speed feedforward/torque feedforward		
	Torque	Fixed torque compensation/analog torque		
	compensation	compensation/automatic torque compensation;		
	way of command input	Pulse frequency/analog input/internal speed planning		
	speed control range	1~Maximum speed		
	bandwidth	3kHz		
speed	Torque limit	Internal torque limit/analog torque limit		
control mode	Command smoothing method	Low-pass filter/median filter		
	Feedforward compensation	Torque feedforward		
	Torque	Fixed torque compensation/analog torque		
	compensation	compensation/automatic torque compensation;		
Torque	Instruction input method	Internal torque given/analog control torque		
Torque control	Torque	Fixed torque compensation/analog torque		
Control	compensation	compensation/automatic torque compensation;		
	speed limit	Internal Speed Limit/Analog Speed Limit		
		ts, the function of each digital input can be assigned arbitrarily, the		
	assignable functions			
digital		drive, torque command A/B switch, torque command reverse		
input	enable, forward torque limit A/B switch, Negative direction torque limit A/B switch,			
	positive speed limit A/B switch, negative speed limit A/B switch, forward jog, reverse jog, speed command reverse enable, Main speed source A/B switch, speed stop enable,			

clear position count, zero position fixed in speed mode, multi-speed speed selection 0, multi-speed speed selection 1, multi-speed speed selection 2, multi-speed speed selection 3,Position command prohibition, position command reverse, pulse command prohibition, electronic gear ratio switch 1, position error clearing, zero return, triggering multi-segment position, multi-segment position selection 0, multi-segment position selection 1, multi-segment position selection 2, multi-segment position selection 3,Multi-stage position and direction selection, home switch input, XY pulse and internal position planning switching, control mode switch 0, control mode switch 1, Enable interrupt fixed length input, cancel interrupt fixed length, trigger interrupt fixed length, first set of second set of gain switch, reset fault, forward limit switch in position mode, reverse limit switch in position mode,Open and closed loop switching in full closed loop mode, electronic gear ratio switch 2, motor overheat input, emergency stop input, internal trigger reset, internal trigger set to one, internal counter count pulse, internal counter reset, speed mode UPDOWN mode UP Signal, speed mode UPDOWN mode DOWN signal, AI zero drift automatic correction.

digital output

Up to 6 digital outputs, the function of each digital output can be assigned arbitrarily, the assignable functions include:

Drive enabling, speed reaching, decelerating, accelerating, zero-speed, speed overrun, forward running, reverse running, fault output, forward speed limit in torque mode, Negative speed limit in torque mode, speed limit in torque mode, positioning completion output, positioning approaching output, origin return completion output, position error too large output, Interrupt fixed length completion signal output, software limit signal output, brake signal output, input command valid, always OFF, always ON, torque limit signal output, torque arrival signal, internal trigger status, internal counter count arrival, The speed is consistent and the pulse position command is zero signal output.

fault protection

Software overcurrent, hardware overcurrent, overvoltage, undervoltage, current sensor failure, encoder failure, EEPROM verification failure, phase sampling failure, FPGA and ARM communication failure, large current change failure, magnetic encoder failure, current phase sequence learning failure, Z point not scanned during self-learning, and Z point offset not found, Hall code value learning error, over temperature of the drive, no feedback of hall value from the wire-saving encoder when power-on, mismatch of motor encoder types, when the origin is returned to zero, the origin switch INFn.34 is not set, Repeated assignment of INFn.xx, overspeed, position error is too large, interrupt fixed-length trigger signal INFn.40 is not set, no return to zero before absolute point motion, motor overload, software limit, hardware limit, curve planning failure, full closed loop Position error is too large, Forward (reverse) rotation is prohibited, Z point signal is unstable, RPDO reception timeout, motor stall, braking resistor overload, forward travel switch input function bit INFn.43 is not assigned to entity DI, reverse travel switch input function bit INFn .44 not assigned to entity DI,Origin search error, lap overflow in absolute value mode, absolute encoder battery failure, inertia learning failure, when learning full closed-loop parameters, the position value detected by the second encoder is too small, bus error, motor

	overheating, DI function code no assignment, AI zero drift is too large, zero ret timeout, absolute encoder battery failure, wrong motor rotation direction durabsolute encoder self-learning, and absolute encoder battery voltage is too low.				
Installation Environment Requirement	air pressure ambient temperature environment humidity	86~106kPa $0\sim40~^{\circ}\text{C}$, Derating is used when the temperature exceeds $40~^{\circ}\text{C}$, and derating by 2 % for every 1 $^{\circ}\text{C}$ increase. Up to $50~^{\circ}\text{C}$. $0\sim90\%$ RH (No dew condensation)			
S	IP level vibration	IP20 0~4.9m/s^2			

2.4 Drive selection

The parameters of the servo factory default maximum current can be viewed through P05.10~P05.20 parameters. If P05.13 defaults to 300%, it means that the factory default maximum output current of the driver is 3 times the rated current of the driver, but it does not represent the maximum current that the servo can output. If you need to further open the current of the driver, please contact our technical personnel for inquiry.

2.4.1 E-structure 220V driver selection

Drive model	Output rated current A	Output maximum current A	Hardware output maximum current A
VC310-00323	3	9	15
VC310-00623	6	18	23
VC310-01223	12	36	47
VC310-01523	15	36	47
VC310-02723	27	54	86

2.4.2 E structure 380V driver selection

Drive model	Output rated current A	Output maximum current A	Hardware output maximum current A
VC310-3R833	3.8	11.4	28
VC310-00733	7	14	28
VC310-01233	12	24	47
VC310-01633	16	32	57
VC310-02033	20	40	64
VC310-02733	27	54	86
VC310-03233	32	64	107
VC310-03833	38	76	129

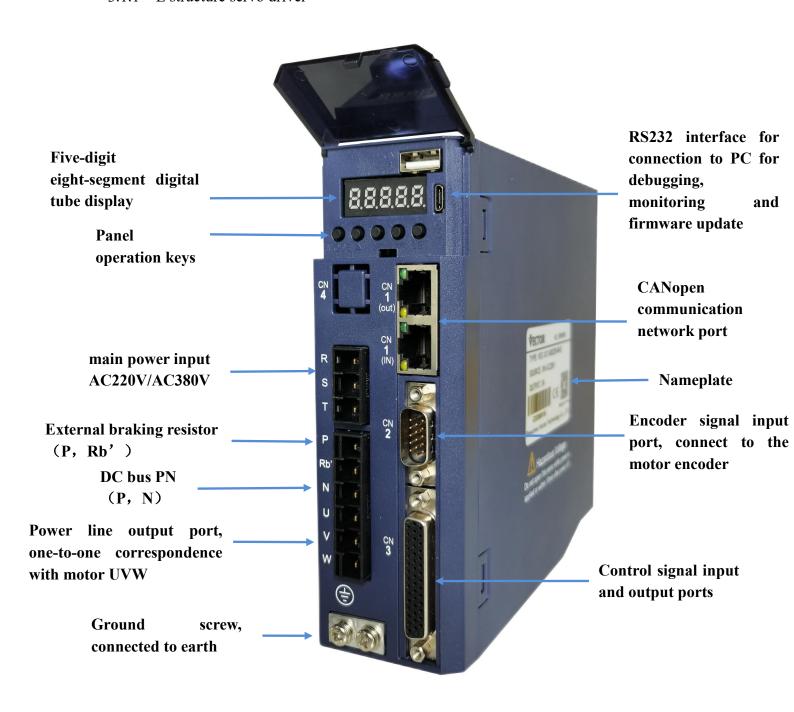
T 71	_	\sim	_	\sim	_
V/	н١		17	1	R
٧.	ט∟'	() I	Ľ	v	ı١

VC310 series servo driver instruction manual

VC310-04533	45	67.5	143
VC310-06033	60	90	135
VC310-07533	75	112.5	168
VC310-09033	90	135	202
VC310-11033	110	165	247
VC310-15033	150	225	337

2.5 Meet the standards

This product meets the following CE certification standards:


- 1. EN 61800-5-1:2007+A1:2017 (Part 5-1 Safety Requirements for Electricity, Heat and Energy of Speed Regulating Electric Drive System), the corresponding national standard is GB12668.501-2013;
- 2. EN IEC 61800-3:2018 (Part 3 Electromagnetic Compatibility Standard and Its Specific Test Methods for Speed-governing Electric Drive Systems), the corresponding national standard is GB12668.3-2012.

Chapter 3 Wiring

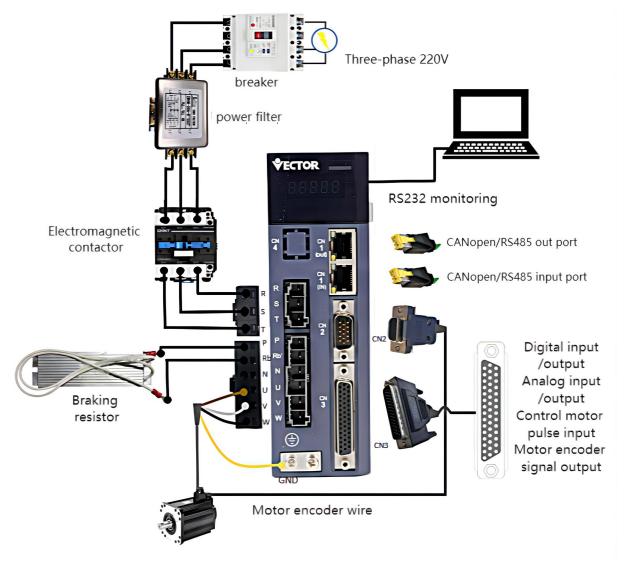
This chapter describes the wiring method of the servo drive and the definitions of various signals.

3.1 Drive overview

3.1.1 E structure servo driver

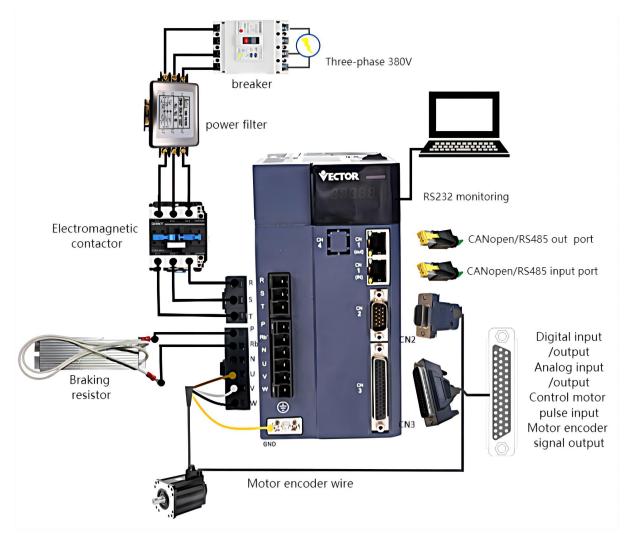
3.2 Main circuit wiring

This section describes the functions of the main circuit terminals, main circuit wiring examples, and main circuit wiring precautions.


3.2.1 Main circuit terminal names and functions

Terminal symbol	Name	Function		
R, S, T	Main circuit power	Three-phase 380V driver: power supply access R, S, T;		
N, 5, 1	supply input	Three-phase 220V driver: power supply access R, S, T;		
U, V, W	Motor Terminals	One-to-one connection with motors U, V, W		
P, Rb'	Braking resistor	External braking resistor		
1.7 KD	terminal	External braking resistor		
P, N	DC bus terminal	External power saving module or shared DC bus		
	Earth terminal	Connect to the ground and connect to the ground wire		
		of the motor at the same time		

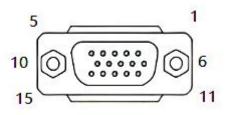
Note when sharing DC bus: 380V driver can only share DC bus with 380V driver, 220V driver can only share DC bus with 220V driver.


3.2.2 Typical Main Circuit Wiring Example

(1)E structure driver is three-phase 220V

• The +24V power supply of IO needs to be provided by the user.

(2)E structure driver is three-phase 380V


• The +24V power supply of IO needs to be provided by the user.

3.2.3 Main circuit wiring precautions

- (1) Do not connect the input power cable to the P, RB', N, U, V, W terminals of the drive, otherwise the servo drive will be damaged.
- (2) The U, V, W terminals of the driver and the U, V, W terminals of the motor should be connected one by one according to their names, and the motor will not run normally if they are connected incorrectly.
- (3) The braking resistor cannot be connected to the terminals P and N of the DC bus, otherwise it may cause a fire!
- (4) The ground terminal of the driver must be connected to the ground to avoid leakage and reduce the interference to the system, and the diameter of the ground wire should be the same or larger than that of the power supply wire.
- (5) When wiring, do not pass the power cable and the signal cable through the same pipe, and do not bundle them together. The distance between them should be more than 30cm to avoid interference.
 - (6) Use twisted-pair shielded cables for signal lines and encoder lines.
- (7) For the wiring length, the maximum length of the command input line is 3m, and the maximum length of the encoder line is 20m.
- (8) Even if the power is turned off, high voltage may still remain inside the servo drive. Therefore, after turning off the power, do not touch the power terminals for 5 minutes.
- (9) Do not turn on the power when the terminal block screws are loose or the cables are loose, otherwise it may cause fire.
- (10) Please do not turn on/off the power frequently. When you need to repeatedly turn on/off the power continuously, please control it to less than once a minute. Since there is a capacitor in the power supply part of the servo driver, when the power is turned on, a large charging current will flow (charging time 0.2 seconds). If the power is turned on/off frequently, the performance of the main circuit components inside the servo drive will be degraded and the service life will be shortened.

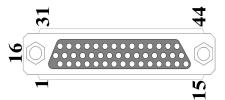
3.3 Encoder signal wiring

3.3.1 Pin assignment of the encoder connection port (CN2)

15pin interface (male)

3.3.2 The pin definition of the encoder connection port (CN2)

The VC310 servo model supports incremental photoelectric encoder/wire-saving photoelectric encoder/absolute encoder. The pin definitions of the encoder connection port are shown in the table below.


15PIN pin (male header)					
Pin No.	Signal name	Pin No.	Signal name		
1	A+ or BISS-C encoder CLK+	2	A- or BISS-C encoder CLK-		
3	B+ or BISS-C encoder DATA+	4	B- or BISS-C encoder DATA-		
5	Z+or absolute value encoder signal positive	6	Z-or absolute value encoder signal negative		
7	U+	8	U-		
9	V+	10	V-		
11	W+	12	W-		
13	+5V	14	OV		
15	hold	Case	Shielded network layer		

3.4 Input/Output Signal Wiring

In order to facilitate communication with the upper controller, the VECTOR servo drive provides 10 groups of digital input terminals and 6 groups of digital output terminals that can be arbitrarily configured. In addition, it also provides XY pulse input and encoder differential output signals OA+, OA-, OB+, OB- and analog input and output signals that can be arbitrarily divided.

3.4.1 Pin assignment of input/output signal port (CN3)

VC310 control signal input and output port CN3 adopts 44PIN (female) interface.

44PIN pin (female header)

3.4.2 Pin definition and function of input/output signal port (CN3)

The control signal input and output port pins of VC310 are defined as follows

	44PIN pin definition						
Pin No.	Define	Functional Description	Pin No.	Define	Functional Description		
10、26	+24V	External DC24V power	21	RST	Reset		
9、25	COM	supply, for DI, DO work	12	AGND	Built-in Analog Ground		
3	DO1		14	AI1	Analog input		
18	DO2		15	AI2	AliaTog Tilput		
2	D03		44	AO1	Programmable Analog Output		
17	D04		28	Y2+	High-speed pulse		
		29	Y2-	position command input			
1	DO5	Programmable Digital Output	13	X2+(SIG+)	(Default high-speed pulse position command input (can be customized		
16	D06		30	X2-(SIG-)	as Tension sensor signal input, the tension sensor can be powered through pins 35 and 36 (only for rewinding and		

					unwinding)) Two
					functions can be
					selected)
24	DI1		37	OA+	
8	DI2		38	OA-	Select the encoder
23	DI3		39	OB+	signal frequency
					division output or the
7	DI4		40	OB-	second encoder input
		Programmable digital			through parameter PO3.78
22	DI5		41	0Z+	Encoder Z point signal
6	DI6	input	42	OZ-	output
5	DI7		35	+5V	Decile in tEV manuar
20	DI8		36	OV	Built-in +5V power
4	DI9		11	SW-DO	DO's NPN/PNP jumper
19	DI10		27	SW-DI	DI's NPN/PNP jumper
31	Χ+	Dogition command input	43	ХҮРН	XY input pull-up
32	Х-	Position command input, input signal type can choose differential signal or open collector	40	ΛΙΡΠ	resistor
33	Υ+			Shielded	Connect to the ground
2.4	V_		Case	network	Connect to the ground
34	Υ-			layer	wire of the driver

3.4.3 Input and output signal type selection

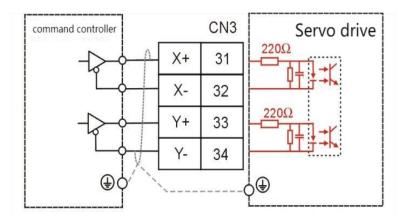
Depending on the type of the host controller, the DI and DO signals of the VECTOR servo drive are designed to be selected by jumpers.

1) DIx jumper selection

SW-DI (pin 27 of CN3) and +24V (pin 26) are short-circuited as NPN, and SW-DI (pin 27 of CN3) and COM (pin 25) are short-circuited as PNP;

2) DOx jumper selection

SW-DO (pin 11 of CN3) and COM (pin 25) are short-circuited as NPN, and SW-DO (pin 11 of CN3) and +24V (pin 26) are short-circuited as PNP;

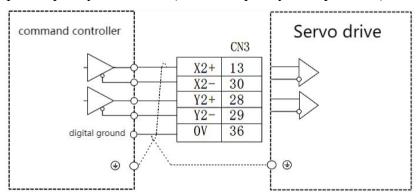

Remarks: External DC24V power supply is connected to pin 9 (COM) and pin 10 (+24V).

3.4.3 Position command input wiring example

The following describes the wiring method of the position command input in the CN3 port in detail. There are two options for the input signal type, namely differential signal input and open collector input. Details are as follows:

(1) When differential signal input

Maximum input frequency ≤ 500KHz (before frequency multiplication)



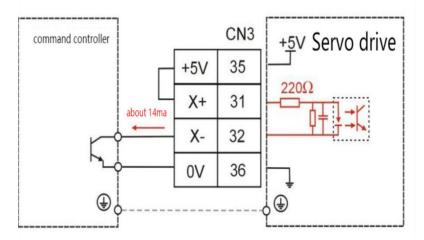
When working, please ensure that:

•
$$3.2V \leq [(\text{high level})-(\text{low level})] \leq 5.1V$$

If the above formula cannot be satisfied, the input pulse of the servo drive will be unstable, and the phenomenon of pulse loss or command inversion may occur.

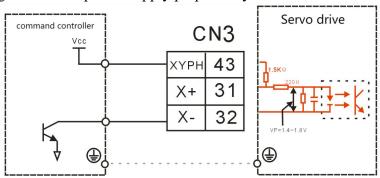
(2) High-speed pulse position command input (differential signal input) Maximum input frequency ≤ 4MHz (before frequency multiplication)

When working, please ensure that:

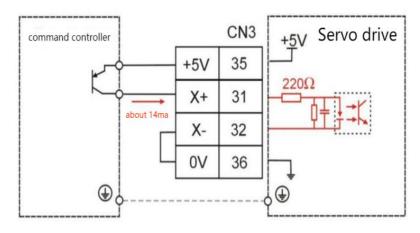

•
$$3.2V \le [(\text{high level}) - (\text{low level})] \le 5.1V$$

If the above formula cannot be satisfied, the input pulse of the servo drive will be unstable, and the phenomenon of pulse loss or command inversion may occur.

(3) Open collector input

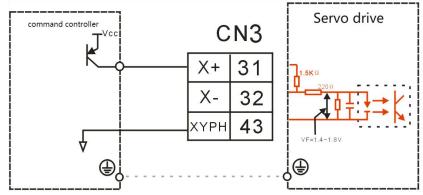

Maximum input frequency ≤ 300 KHz (before frequency multiplication)

- ① The upper controller is NPN type (Japanese PLC such as Mitsubishi, Panasonic, Omron, etc.)
 - a. When using the drive's internal 5V power supply:



● The wiring of Y+ (33 feet) and Y- (34 feet) is the same as that of X+ and X-.

b. When using an external power supply prepared by the user:

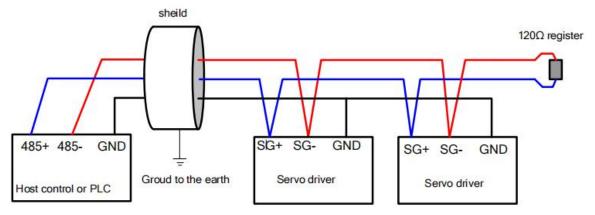


- The wiring of Y+ (33 feet) and Y- (34 feet) is the same as that of X+ and X-.
- VCC=24V。
- ②The upper controller is PNP type (European PLC such as Siemens)
- a. When using the drive's internal 5V power supply:

● The wiring of Y+ (33 feet) and Y- (34 feet) is the same as that of X+ and X-.

b. Use a user-prepared external power supply

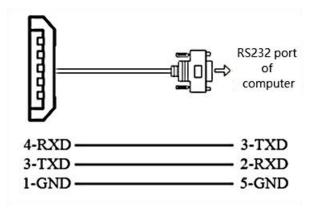
- The wiring of Y+ (33 feet) and Y- (34 feet) is the same as that of X+ and X-.
- \bullet VCC=24V $_{\circ}$


3.5 Communication signal wiring

3.5.1 Pin assignment and definition of VC310 servo E structure communication port

Location and function	Terminal shape	Description				
		Both interfaces are defined the same.				
		Pin.No	Position	Description		
		1	CANH	CAN bus high signal		
		2 CANL CAN bus 1		CAN bus low signal		
		3	GND	power ground		
		4	SG+	The signal of RS485 is positive		
	OUT SET TO SET T	5	SG-	The signal of RS485 is negative		
		6	NC	dangling		
		7	NC	dangling		
CN1		8	GND	power ground		
		(1) Whether	r it is RS485 (or CAN bus, it is necessary		
		to connect the power ground of the controller (PLC)				
		and the power ground of the servo drive				
		(2) When multiple drives are used in parallel with				
		RS485 bus, please add a 120 Ω terminal resistance				
			SG+ and SG	G- terminals of the farthest		
		drive				
		(3) When multiple drivers are used in parallel with				
		CAN bus, please add a 120 Ω terminal resistance				
		between the CANH and CANL terminals of the farthest driver				
		iai thest uriv	<u>'EI</u>			

Remarks: VC310 servo can use RS-485 signal communication, or CANOpen bus for communication.


Note: When wiring, please connect the GND terminal of the host device and the GND terminal of the servo drive together.

3.5.2 E structure monitoring port pin assignment and definition

Location and function	Terminal shape	Description				
CN5	1 Turnou 5	Pin No. 1 2 3 4 5	Define GND NC TXD RXD NC	Description power ground dangling RS232 send RS232 receive dangling		

The connection to the computer is as shown below:

parameter no.	Parameter Description	Setting range	Units	Function	Setting method	Effective way	Defaults	read and write method
P08.26	RS232 monitor port baud rate 0- 9600 1- 38400 2- 115200	0~2	bps	Set the baud rate of the RS232 monitor port.	anytime	Immediately	2	RW

RS232 baud rate selection parameters are as follows:

3.6 Wiring suggestions and anti-interference countermeasures

3.6.1 Wiring Recommendations

For the safety and stability of the product, please pay attention to the following matters when wiring:

- 1. For the cables related to the command input and encoder wiring, please select the shortest distance wiring.
 - 2. The ground wire should be as thick as possible (above 2mm²).
- •All parts of the system (servo driver, servo motor, noise filter, host controller, switching power supply, HMI, etc.) must be grounded, and must be grounded at one point.
 - The recommended grounding resistance is 100Ω or less.
 - •Use shielded cables for motor cables.
 - 3.Do not bend or strain the cable.
- •The core wire diameter of the signal cable is only 0.2mm or 0.3mm, please use it carefully.

To prevent radio frequency interference, please use a noise filter.

•Install a noise filter on the input side of the power cord when using it near a home or worrying about radio frequency interference.

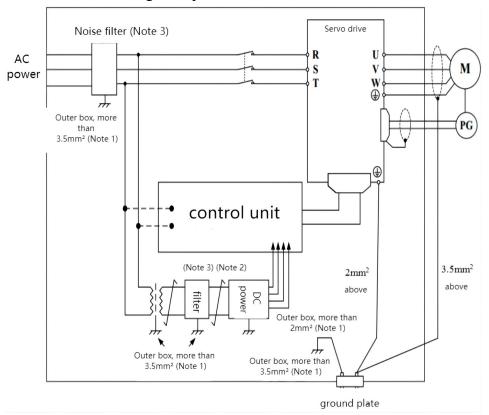
In order to prevent malfunction caused by noise, the following processing methods can be adopted:

- Install the host device and noise filter as close to the servo driver as possible.
- •Install surge suppressors on the coils of relays and AC contactors.
- •When wiring, please separate the strong current line and the weak current line, and keep an interval of more than 30cm, do not put them in the same pipe or bundle them together.
- •Do not share the power supply with electric welding machines, electrical discharge machining equipment, etc. Even if the power supply is not shared, install a noise filter on the input side of the wire when there is a high-frequency generator nearby.
 - 6. Protect the power cord with a wiring circuit breaker or fuse.
 - •Be sure to use a circuit breaker or fuse for wiring in order to prevent cross-electric

shock in the servo system.

3.6.2 Anti-interference countermeasures

1. Servo motor housing ground


Be sure to connect the ground terminal "🖢" of the servo motor directly with the ground terminal "🖢" of the servo drive. In addition, connect the ground terminal "🖢" of the driver to the ground. Otherwise, when the servo motor is mechanically grounded, the switching disturbance current will flow from the main circuit of the drive through the parasitic capacitance of the servo motor.

2. When there is interference on the command input cable

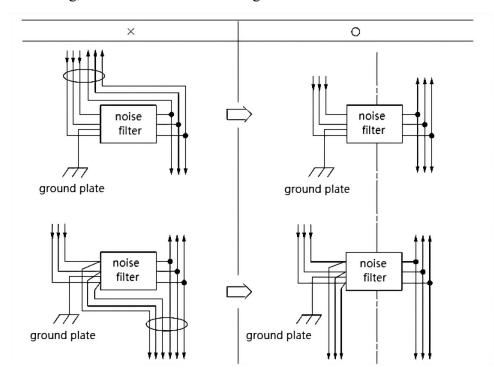
When there is interference on the command input line, please connect the 0V line of the input line to the ground, the main circuit wiring of the motor passes through the metal conduit, and connect the conduit and the junction box to the ground.

• Please perform the above grounding treatment and ground all of them at one point.

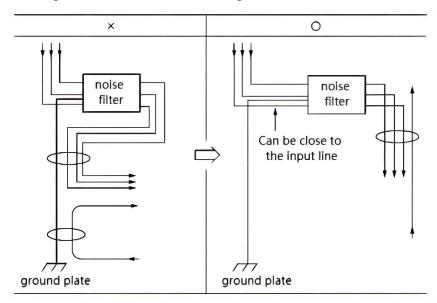
3. Anti-interference wiring example

Note 1: Please use a thick wire of 3.5mm2 or more for the connection wire of the outer box used for grounding (braided copper wire is recommended).

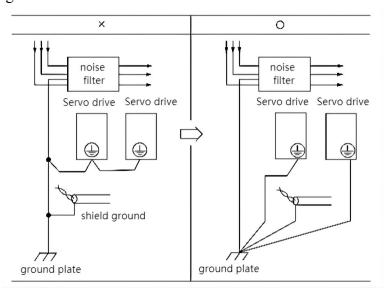
Note 2: Please be sure to use twisted pair shielded wire for some parts.

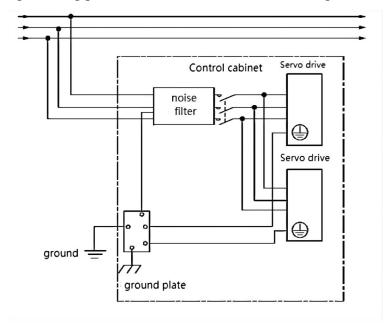

Note 3: When using a noise filter, please observe the precautions described in the

following "How to use the noise filter".


4. How to use the noise filter

In order to prevent the interference of the power line and reduce the influence of the servo drive on other equipment, please select a noise filter that can make the servo system meet the IEC/EN 61800-3 electromagnetic compatibility standard according to the power of the servo drive, and observe the The following notes:


• Please separate the input wiring and output wiring of the noise filter, do not put them in the same bushing, and do not bundle them together.


• Please separate the ground wire of the noise filter from the output wiring, do not put them in the same casing, and do not bundle them together.

• Please connect the ground wire of the noise filter to the ground plane separately. Do not connect other ground wires.

• When the noise filter and the servo drive are installed in the same control cabinet, please connect the ground wire of the noise filter and the ground wires of other devices in the control cabinet to the grounding plate of the control cabinet, and then ground.

Chapter 4 Panel Display and Keyboard Operation

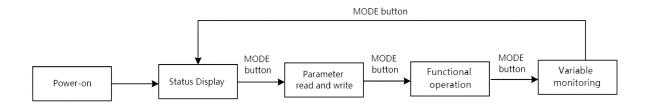
4.1 Introduction to panel composition

4.1.1 E Structure Servo Driver Panel

The panel contains 5 buttons and 5 digital tubes. The general functions of the 5 buttons are shown in the table below.

button name	Button function
Mode	Mode switch, return to the previous menu
▲ Increase	Increase the value of the blinking digit of the LED nixie tube
▼ decrease	Decrease the value of the blinking digits of the LED nixie tube
⊿ D isulas	Move the flashing bit of the LED digital tube to the left; check the
■ ■ Displac ement	high-order value of the data whose length is greater than 5 digits; reset the
ement	fault; execute the Fn function
SET	Read/write parameter value, enter Fn function page

4.2 panel operation mode


4.2.1 E Structure Servo Driver Panel

There are a total of 4 operating modes, namely status display, parameter reading and writing, variable monitoring, and function operation.

operating mode	Mode introduction
Status Display	Display the status of the drive, such as reset (panel display rst), ready (panel display rdy), running (panel display run), fault (Er.xxx), or monitor a specific variable in operation (such as speed, bus voltage, etc. Wait)
Parameter read and	read and write all parameters

write	
Variable	Monitor a variable or IO status of the drive
monitoring	Monitor a variable of 10 status of the drive
Functional	Execute specific functions, such as jog test run, parameter reset to factory
operation	value, drive reset

Each mode is switched through the MODE button.

4.3 Pulse servo status display

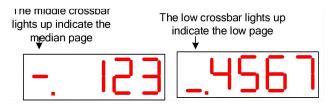
In this mode, the status of the drive is displayed, and there are several statuses as follows.

Status name	Status introduction	panel display
Deset state	The driver enters this state after power-on initialization or	
Reset state	re-reset and restart.	
Doody state	The servo drive is initialized and enters the ready state	rdy
Ready state	when there is no fault in the hardware detection.	
running state	When the driver is enabled, the motor is powered on	run
fault atata	The drive reports a fault, and the panel displays the reported	Er.xxx
fault state	fault code	

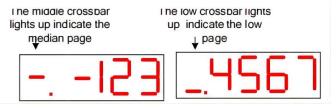
In the non-fault state of state display, the panel can be set to display a specific variable through P02.05. For bus type servo status display, refer to the corresponding bus protocol chapter.

4.4 Parameter read and write

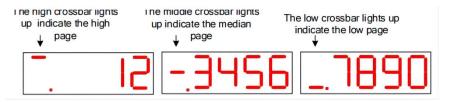
When entering the parameter read/write mode for the first time, Pxx.yy is displayed. Among them, xx is the parameter group, and yy is the parameter number in the group. The parameters of the driver are divided into 0~13 groups, and each group can accommodate up to 99 16-bit parameters. There are four types of parameters, namely unsigned 16-bit parameters, signed 16-bit parameters, unsigned 32-bit parameters, and signed 32-bit parameters. The range of values for the unsigned 16-bit parameter is 0 to 65535. The value range for signed 16-bit parameters is -32767 to 32767. The value range of the unsigned 32-bit parameter is 0 to 4294967295. The value range for signed 32-bit parameters is -2147483647 to 2147483647.

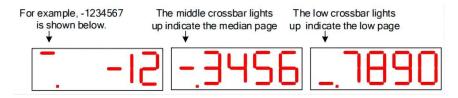

4.4.1 Display rules for numbers of different lengths

Negative numbers less than 4 digits and positive numbers less than 5 digits can be displayed through 5 digital tubes. Such as -9999 and 12345 are displayed as follows.



Negative numbers with more than 4 digits or positive numbers with more than 5 digits are displayed on the 2nd or 3rd page. The switching between pages is realized by long pressing the "◀ ◀" (shift) key. The leftmost nixie tube of each page identifies the number of pages displayed at this time. The high horizontal bar is lit to represent the high page, the middle horizontal bar is lit to represent the middle page, and the low horizontal bar is lit to represent the low page.


For example, 1234567 is displayed as follows.


For example, -1234567 is displayed as follows.

1234567890 is displayed as follows.

-1234567890 is displayed as follows.

4.4.2 Parameter setting steps

For example, the process of setting P00.02 to 4000 is as follows.

- ① Press the MODE button to switch the mode to the parameter reading and writing mode, and the keyboard displays P00.00 at this time;
 - ② Combined with "▲" (increase), "◄◄" (shift), "▼" (decrease) three keys to modify

the parameter number to P00.02;

- (3) Press the SET key, first read the value of P00.02;
- ④ Combine the " \blacktriangle " (increase), " \blacktriangleleft " (shift), " \blacktriangledown " (decrease) three keys to set the parameter value to 4000;
 - 5 Press the SET key to write the set parameter value into P00.02.

For data displayed on multiple pages, you can automatically shift to other pages by "

■ " (shift), or you can directly shift to other pages by long pressing "■■" (shift).

4.5 Functional operation

Currently the servo supports the following functions.

Function No.	Function
Fn000	Reset the drive
Fn001	Jog test run
Fn002	Parameter reset to factory value
Fn003	Update ARM firmware
Fn004	Learning the parameters of asynchronous motors
Fn005	Learn motor pole pairs and encoder parameters
Fn006	Single parameter gain adjustment
Fn007	Learning load inertia
Fn008	Update the FPGA program
Fn009	Restore all factory parameters except P00 and P01 parameter groups
Fn010	Backup all parameters
Fn011	Restoring backed up parameters
Fn012	Restart RS232 communication
Fn013	Self-learning full-closed loop polarity and the number of pulses of the
111013	second encoder corresponding to one rotation of the motor
Fn014	Clears the revolution value of the absolute encoder
Fn016	Current loop PI parameters of self-learning synchronous motor

4.5.1 Fn000 reset drive function

The operation steps are as follows:

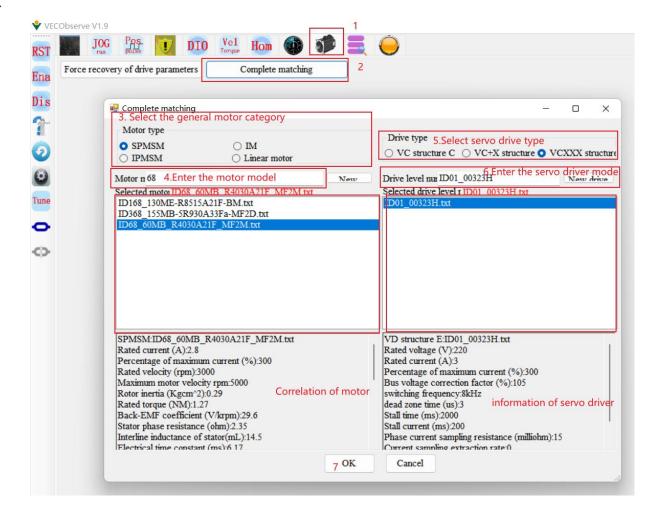
- ① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;
- ② Combine the " \blacktriangle " (increase), " \blacktriangleleft " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn000;
 - 3 Press the SET key, the drive will be reset directly.

Note: In any state, pressing the "▲" (increase) and "▼" (decrease) keys simultaneously for 2 seconds can reset the drive.

4.5.2 Fn001 Jog test run function

The operation steps are as follows:

- ① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;
- ② Combine the " \blacktriangle " (increase), " \blacktriangleleft " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn001;
- ③ Press the SET key, at this time the drive is enabled and the digital tube displays the motor speed in real time.
- ④ Press the "▲" (increase) key to increase the Jog speed by 10rpm, press the "▼" (decrease) key to reduce the Jog speed by 10rpm, press the "◄ ■" (shift) key to set the Jog speed to 0; long Press the "◄ ■" (shift) key to change the speed increase rate to 500rpm.
- 5 After the Jog trial run, press the MODE button to exit the Jog mode, and the servo is disabled at this time.


Note: When the drive is enabled, the jog test operation function is invalid.

4.5.3 Fn002 Restore all parameters to factory defaults

All parameters are restored to factory defaults, and the drive will restore its related parameters according to the set motor model P00.06 and drive level P01.15. If Er609 is reported, it means that the drive level P01.15 is set incorrectly, and the servo does not have the drive parameters of this drive level temporarily. If Er610 is reported, it means that the motor model P00.06 is set incorrectly, and the servo does not have the motor parameters of this motor model. When Er609 or Er610 is reported, if you need to forcefully restore a group of drive parameters, you can set P10.33=32767 to shield the above errors, and then restore the factory defaults.

The operation steps are as follows:

① Confirm the motor model P00.06 and drive grade P01.15. Motor models and drive level can be found on the VECObserve Complete Matching page. As shown below.

- 2 Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;
- ③ Combine the " \blacktriangle " (increase), " \blacktriangleleft " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn002;
 - Press the SET key to display rECY;
 - 5 Long press the "◀◀" (shift) key;
 - (6) If the recovery is successful, it will display donE, and if it fails, it will display Err.

Notice:

*When the drive is enabled, the function of parameter restoring to factory default is invalid.

*When power on, if you press the "▲", "▼", "◄<" keys at the same time, the parameters can also be restored to the factory values.

4.5.4 Fn003 Download program reset

The operation steps are as follows:

- ① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;
- ② Combined with " \blacktriangle " (increase), " \blacktriangleleft " (shift), " \blacktriangledown " (decrease) 3 buttons to set the display value of the nixie tube to Fn003;

- 3 Click SET to display UPd; (Update)
- 4 Long press the "◀◀" (shift) key to reset the drive;
- (5) At this point, the ARM firmware can be updated via RS232.

4.5.5 Fn004 Learn asynchronous motor encoder parameters

This function can self-learn the relevant parameters of the asynchronous motor. Including P00.05 motor pole pair number, P00.11 motor encoder resolution, P00.47 induction motor stator resistance (Ω), P00.48 induction motor rotor resistance (Ω), P00.49 induction motor total leakage inductance (mH), P00.50 induction motor magnetizing inductance (mH). During the self-learning process, the motor maintains the smooth axis, and the motor rotates to the rated speed.

The operation steps are as follows:

- (1) Set the motor rated frequency P00.51;
- ② Combine the " \blacktriangle " (increase), " \blacktriangleleft " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn004;
 - 3 Click SET to display SEL0; (Self-Learn0)
- ④ Press the "◀◀" (shift) key to start self-learning. After the self-learning is completed, it will automatically turn off the enable or report a fault.

Note: 1. When the driver is enabled, this function is invalid.

- 2. The asynchronous motor self-learning encoder can only be realized through this function, and the monitoring software learning is invalid.
- 3. During the learning process, the motor will run at high speed, please make sure that the motor is fixed and safe to operate.
 - 4.5.6 Fn005 Learn related parameters of synchronous motor encoder

When using motors other than our company, it is necessary to learn the encoder parameters.

Before self-learning, set the self-learning maximum current limit P02.36 (50% of motor rated current), motor maximum speed P00.03, motor rated speed P00.02, motor Rated current P00.01, drive rated current P01.03.

The operation steps are as follows:

- ① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;
- ② Combine the " \blacktriangle " (increase), " \blacktriangleleft " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn005;
 - (3) Click SET to display SEL1; (Self-Learn1)
- ④ Press the "◀◀" (shift) key to start self-learning. After the self-learning is completed, it will automatically turn off the enable or report a fault. The main learning parameters are as follows: P00.05 Motor pole pairs, P00.71 Z point offset, P00. 11 Motor encoder resolution, P00.72 Encoder AB phase sequence.

If the overcurrent Er.100 is reported during the learning process, parameters P02.36

(maximum current limit of self-learning), P07.01 (current loop proportional gain) and P07.02 (current loop integral gain) can be appropriately reduced.

Note: When the driver is enabled, this function is invalid.

4.5.7 Fn006 Single parameter gain adjustment

Single parameter gain adjustment refers to adjusting one parameter to achieve the purpose of adjusting servo rigidity. Before single-parameter gain adjustment, the servo load inertia ratio P07.29 must be accurately obtained. For the method of obtaining the load inertia ratio, refer to Fn007.

The operation steps are as follows:

- ① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;
- 2 Combine the " \blacktriangle " (increase), " \blacktriangleleft " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn006;
 - 3 Click SET to display the value of rigidity level P07.28;
 - ④ Press the "◀◀" (shift) key, the motor starts to rotate forward and reverse;
- 5 By pressing "▲" or "▼", gradually increase or decrease the value of the rigidity level until the rigidity of the servo meets the actual application. Under normal circumstances, the rigidity level can be gradually increased until the motor has abnormal noise, and then reduce the rigidity level by 1-2.

Note: When the driver is enabled, this function is invalid.

For VC310 series servo, every time the rigidity level is adjusted, the parameters will not be automatically saved in the servo. If the adjustment is completed, the user needs to manually long press the "◄◄" (shift) key to save the adjusted rigidity level in the servo.

4.5.8 Fn007 Learning load inertia

The load inertia is the most important parameter of the servo system. Only when the inertia is matched can the servo perform optimally.

(1) VC310 Servo Load Inertia Learning

The operation steps are as follows:

- ① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;
- ② Combine the " \blacktriangle " (increase), " \blacktriangleleft " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn007;
 - (3) Click SET to display SEL4; (Self-Learn 4)
- ④ Press the "◀◀" (shift) key to start self-learning. The servo drive enters the state of automatically learning the habit, and the learned inertia will be automatically displayed on the panel.
- \bigcirc Press " \blacktriangle ", the motor rotates forward for 2 circles, and press " \blacktriangledown ", the motor rotates reversely for 2 circles. The load inertia value will be updated to the panel every time it rotates. Press continuously for several times until the inertia is stable, the inertia at this time is the

learned load inertia. After stabilization, long press "◀◀" (shift) to save the learned value to the servo drive.

If the overcurrent Er.100 is reported during the learning process, P07.01 (current loop proportional gain), P07.02 (current loop integral gain), P07.03 (speed loop proportional gain), P07.04 can be appropriately reduced (speed loop integral gain).

If the load inertia is large, low frequency oscillation may occur during self-learning. At this time, it is necessary to manually increase P07.03 and decrease P07.04 before self-learning.

Notice:

- 1. When the drive is enabled, this function is invalid.
- 2. When the load inertia is large, low-frequency oscillation may occur in self-learning, and it is necessary to manually increase P07.03 and decrease P07.04, and then self-learn.
- 3. When the load inertia is small, reduce the inertia self-learning acceleration and deceleration time P07.33.
- 4. When the machine vibrates, the position loop gain P07.05 needs to be reduced.
- 4.5.9 Fn008 update FPGA program reset

The operation steps are as follows:

- ① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;
- ② Combine the " \blacktriangle " (increase), " \blacktriangleleft " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn008;
 - 3 Click SET to display FUPd; (FPGA Update)
 - 4) Long press the "◀◀" (shift) key to reset the drive;
- (5) At this point, the FPGA firmware can be updated through the "VECTOR FPGA Firmware Update Tool".
 - 4.5.10 Fn009 restores all factory parameters except P00 and P01 parameter groups

The operation steps are as follows:

- ① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;
- ② Combine the " \blacktriangle " (increase), " \blacktriangleleft " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn009;
 - (3) Click SET to display -rECy; (-Recovery)
 - (4) Long press the "◀◀" (shift) key;
 - (5) If the recovery is successful, it will display donE, and if it fails, it will display Err.

4.5.11 Fn010 backup all parameters

The operation steps are as follows:

- ① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;
- ② Combine the " \blacktriangle " (increase), " \blacktriangleleft " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn010;
 - 3 Click SET to display bcuP; (backup Parameter)
 - 4 Long press the "◄◄" (shift) key;
 - (5) If the backup is successful, it will display donE, and if it fails, it will display Err.

Note: The drive backup parameters are stored in another address area of the drive memory.

4.5.12 Fn011 restore the parameters that have been backed up

The operation steps are as follows:

- ① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;
- 2 Combine the " \blacktriangle " (increase), " \blacktriangleleft " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn011;
 - (3) Click SET to display rESto. (restore)
 - 4 Long press the "◀◀" (shift) key;
 - (5) If the restoration is successful, it will display donE, and if it fails, it will display Err.

4.5.13 Fn012 restart RS232 communication

When the servo RS232 does not communicate for a long time, it will automatically turn off. RS232 communication can be restarted via Fn012.

The operation steps are as follows:

- ① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;
- ② Combine the " \blacktriangle " (increase), " \blacktriangleleft " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn012;
 - (3) Click SET to display SEnd;
 - 4 Press the "◄ ■" (shift) key;

4.5.14 In Fn013 full-closed loop mode, the polarity of self-learning feedback and the number of pulses of the second encoder corresponding to one rotation of the motor

In full-closed loop mode, it is necessary to set the full-closed loop feedback polarity P03.33 and P03.34. The appropriate value can be automatically calculated through this function operation. When performing this function operation, please ensure that the second encoder measuring wheel can be tightly and The material connection ensures that no slippage occurs between the measuring wheel and the material.

The operation steps are as follows:

1 Press the MODE button to switch the mode to the functional operation mode, at this

time the first two digits of the digital tube display Fn;

- ② Combine the " \blacktriangle " (increase), " \blacktriangleleft " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn013;
 - ③ Click SET to display LFCP. (Learn Full Close Parameter);
- ④ Press the "◀ ■" (shift) key; the motor will rotate forward 3 times at a speed of 10rpm.
- 4.5.15 Fn014 clears the absolute value encoder circle value (only for Nikon 24-bit encoder)

The operation steps are as follows:

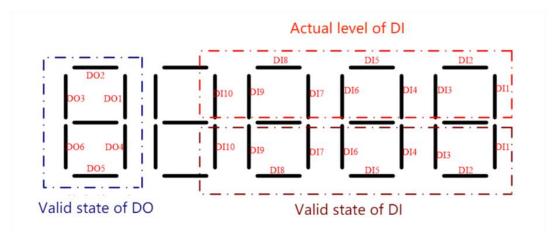
- ① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;
- ② Combine the " \blacktriangle " (increase), " \blacktriangleleft " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn014;
 - (3) Click SET to display CLrEn. (Clear Encoder);
 - (4) Press the "◀◀" (shift) key; clear the absolute encoder turns.

4.5.16 Fn016 Self-learning synchronous motor current loop PI gain

The operation steps are as follows:

- ① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;
- ② Combine the " \blacktriangle " (increase), " \blacktriangleleft " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn016;
 - (3) Click SET to display SELC.
 - ④ Press the "◀◀" (shift) key; start learning the current loop PI gain.

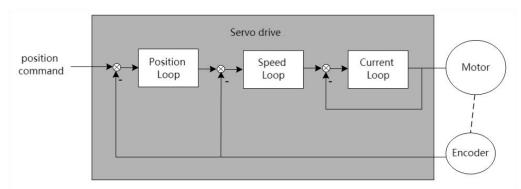
4.6 Variable monitoring


Press the MODE key several times to switch the mode to variable monitoring mode, and the first two digits of the digital tube display Un. Combine the "▲" (increase), "◄◄" (shift), "▼" (decrease) three buttons to set the display value of the digital tube to the number that needs to be monitored (for example, Un007 is to monitor the DIDO status). Press SET to display the variables to be monitored.

At present, the drive can monitor 13 variables, and the values corresponding to the monitoring numbers are shown in the table below.

Number	corresponding value
Un000	Motor speed rpm
Un001	Bus capacitor voltage V

Un002	temperature °C	
	-	
Un003	Current RMS A	
Un004	Command pulse count value	
Un005	Motor encoder pulse count value	
Un006	Second encoder pulse count value	
Un007	DIDO status	
Un008	Voltage value of AI1	
Un009	Voltage value of AI2	
	Output motor instantaneous	
Un011	current percentage	
	Output motor instantaneous	
Un012	power percentage	
	Percentage of output drive rated	
Un013	current	
Un014	Motor load rate	


It should be noted that, for DIDO status monitoring, the actual level of DI (high level on, low level off), the valid state of DI (valid on, invalid off), DO can be monitored simultaneously on 5 digital tubes Valid state (valid on, invalid off). The meaning of each segment in the digital tube is as follows.

As shown in the figure above, the first digital tube displays the valid states of DO1~DO6, and the state of each DO corresponds to the on-off of the corresponding segment of the digital tube, valid on, invalid off. The upper 3 segments of the last 4-digit digital tubes correspond to the actual levels of DI1~DI10 respectively, high level is on, and low level is off. The lower 3 segments of the last 4-digit digital tubes correspond to the valid states of DI1~DI10 respectively, DIDO is on when valid, and off when invalid.

Chapter 5 Servo Control Mode

Servo system consists of three main parts: servo driver, motor and encoder.

The servo driver is the control core of the servo system. By processing the input signal and feedback signal, the servo driver can control the precise position, speed and torque of the servo motor, that is, the position, speed, torque and mixed control mode. Among them, position control is the most important and most commonly used control mode of servo system.

Each control mode is briefly described as follows:

Position control refers to controlling the position of the motor through position commands. The target position of the motor is determined by the total number of position commands, and the rotation speed of the motor is determined by the frequency of the position command. The position command can be given by the combination of external pulse input, the total number of internal given position commands + speed limit. Through the internal encoder (the servo motor has its own encoder) or the second encoder (full closed-loop control), the servo drive can realize fast and precise control of the mechanical position and speed. Therefore, the position control mode is mainly used in occasions requiring positioning control, such as manipulators, placement machines, engraving, milling and engraving (pulse sequence commands), CNC machine tools, etc.

Speed control refers to controlling the speed of the machine through the speed command. Through digital, analog voltage or communication given speed command, the servo drive can achieve fast and precise control of the mechanical speed. Therefore, the speed control mode is mainly used to control the rotation speed. If you want to use the host computer to achieve speed control, you can input the output of the host computer as a speed command to the servo drive, such as an analog engraving and milling machine.

Torque control refers to controlling the output torque of the motor through the torque command. The torque command is given by digital, analog voltage or communication. The torque control mode is mainly used in devices that have strict requirements on the force of the material, such as some tension control occasions such as rewinding and unwinding devices. The torque given value should ensure that the force of the material is not affected by the change of the winding radius.

Hybrid control mode refers to a working mode realized by DI terminal, which can switch the control mode in real time under the servo running state.

Note: When the CANOpen bus does not go for communication, it runs to the internal position and the internal speed mode, you need to set P01.46 to 128, that is, set bit7 to one.

5.1 Basic parameter setting

5.1.1 control mode

The servo drive has 3 basic control modes, namely position mode, speed mode and torque mode. A variety of hybrid control modes can be derived from the 3 basic control modes. Which mode to use can be set by P02.01 parameter.

modes. Which	h mode to use can be se	t by P02.	UI param	eter.			
Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method
P02.01	Drive control mode. Used to select the servo drive control mode.	0~7	-	anytime	Immediately	0	RW
	0- position mode 1- speed mode 2- torque mode 3- Position/torque mode Id mode 4- Position/speed mode Id mode 5- Torque/speed mode IO mode	o switching,	switch thro	ough INFn.3	36, when the sig	gnal is valid,	it is speed
	6- Position/torque/speed m 7- Specialized Servo Contr		ching, throu	gh INFn.36,	INFn.37 switch	ning	
		INFn.37	INFn.36	workin	g mode		
		invalid	invalid	Speed	Mode		
		invalid	valid	Torque	e Mode		
		valid	xx	positio	n mode		

The relevant input function bits are as follows.

Function bits	Bit description
INFn.36	Control mode toggle switch 0
INFn.37	Control mode toggle switch 1

5.1.2 Servo start and stop

When the servo activates the internal input function bit INFn.01 of the drive through IO or communication, the servo is enabled. After OUTFn.25 is output, the command input command is valid, the position/speed/torque command is accepted, and the servo runs.

The servo will perform stop action under the following three working conditions. One is to stop activating the internal input function bit INFn.01; the second is to stop when a fault occurs; the third is to stop when the emergency stop signal INFn.58 is input. The shutdown modes of the 3 working conditions can be set separately. The shutdown mode is set by P02.13. Refer to "7.1.1 Troubleshooting" for fault shutdown mode, and emergency stop shutdown mode is set by P02.14.

The servo has 5 kinds of stopping methods to choose from. The first is free stop; the second is rapid deceleration to stop, the enable is disconnected after stopping, and the motor is powered off; the third is slow deceleration to stop, the enable is disconnected after parking, and the motor is powered off; the fourth is Quickly decelerate to stop, keep the enable after stopping, the user needs to disconnect the enable signal to disable the enable; the fifth is slow deceleration to stop, keep enable after stopping, the user needs to disconnect the enable signal to disable the enable, otherwise it will remain locked and will not accept any command.

Free parking means that the drive is turned off and the motor is free to stop by friction resistance. Deceleration to stop means that the servo drive drives the motor to decelerate, and the motor remains powered on during this process. The deceleration time of rapid deceleration and stop is set by P02.16. The deceleration time of slow deceleration and stop is set by P02.17. Deceleration time refers to the time it takes to decelerate from the rated speed to zero. The actual deceleration time is determined by the speed at the time of failure and the set deceleration time.

Actual deceleration time = set deceleration time $\times \frac{\text{The speed at which the failure occurs}}{\text{Rated speed}}$

Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method		
P02.13	Select the method of	0~2	-	anytime	Immediate	0	RW		
	enabling shutdown				ly				
	Set the deceleration mode of	the servo r	notor from r	otation to st	op and the mo	otor state afte	er stop when		
	the servo is off.								
	0- Off-enable freewheel stop								
	1- Turn off enable after fast of	leceleration	and stop						
	2- Disable enable after slow	deceleration	and stop						
P02.14	Emergency stop mode	0~4		anytime	Immediate	0	RW		
	selection	U~ 1	_	anythie	ly		IX VV		
	Set the deceleration method of the servo motor from rotation to stop and the motor state after stop when								

	the servo is in emergency sto	p.					
	0- Off-enable freewheel stop						
	1- Turn off enable after fast of	leceleration	and stop				
	2- Disable enable after slow	deceleration	and stop				
	3- Quickly decelerate to stop	and keep er	nabled				
	4- Slowly decelerate to stop and keep enabled						
	1						
P02.16	fast stop time Set the stop time when the servo is stopped quickly	0~6553 5	ms	anytime	Immediate ly	500	RW
P02.17	Slow stop time	0~6553	ms	anytime	Immediate	1000	RW
	Set the stop time when the	5			ly		
	servo is slow to stop						

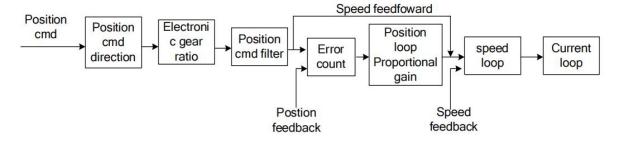
5.1.3 Servo braking method

When the motor decelerates, it will feed back energy to the bus capacitor. When the bus capacitor voltage is too large, an overvoltage fault will be reported. Therefore, a braking resistor needs to be connected to the servo to consume the excess bus voltage on the braking resistor. When the capacitor voltage is high, the dynamic braking circuit is activated. For 220V drives, when the DC bus voltage is greater than 380VDC, the dynamic braking circuit is activated; for 380V drives, when the DC bus voltage is greater than 680VDC, the dynamic braking circuit is activated. The user can select the servo braking mode through P02.20 to release the excess voltage on the bus.

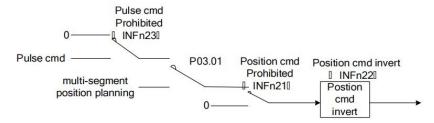
Parameter No.	Parameter Description	Set range	units	Set method	Effectiv e way	Defaults	read and write method	
P02.20	Start dynamic braking	0~3	-	anytime	Immediat	2	RW	
	selection				ely			
	When the busbar voltage exce	eds the limi	t voltage, se	elect the way t	o start the dy	namic brakii	ng circuit.	
	0- Dynamic braking never st	arts						
	1- Dynamic braking can only	y be activate	ed when dec	elerating				
	2- Ready to activate dynamic braking at any time							
	3- Braking is only possible w	hen the ene	rgy is fed ba	nck				

Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method
P02.21	Braking resistor value	0~3276.7	Ω	anytime	Immediately	0	RW

P02.22	Maximum power of braking resistor	0~3276.7	Kw	anytime	Immediately	0	RW	
P02.23	Braking resistor heat	0~100	%	anytime	Immediately	50	RW	
	dissipation coefficient	0/~100	/0					
If P02.23 is set to 100%, it means that the time required to drop from the maximum heat to 0 is 10s.								


5.1.4 command reverse

The speed, torque and position commands can be reversed by setting the register P02.50. P02.50 contains 16-bit binary. When the 0th bit is valid, the position command is reversed; when the 1st bit is valid, the speed command is reversed; When 2 bits are valid, the torque command is reversed.


Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method
P02.50	command reverse	0~7	-	anytime	Immediately	0	RW
	When the 0th bit is valid, the						
	position instruction is						
	reversed;						
	When the 1st bit is valid, the						
	speed command reverses;						
	When the 2nd bit is valid, the						
	torque command reverses						

5.2 position mode

The position mode is a control mode in which the motor position is the control target, and is often used to achieve high-precision positioning. The implementation of the location pattern is shown in the following figure.

5.2.1 Position command source and direction selection

The position command can be derived from the pulse command, or from the internal multi-segment position planning, or switch between the pulse and the internal multi-segment position planning command through IO.

Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method		
P03.01	position command	0~6	-	anytime	Immediate	0	RW		
	source ly								
	In position control mode,	it is used to s	elect the so	ource of pos	sition comm	and.			
	0- From external pulse command								
	1- From internal multi-se	gment location	n planning	g					
	2- Switch between extern	al pulse com	mand and	internal pos	sition planni	ng comma	nd through		
	INFn.35								
	3- The command pulse su	perimposes th	ne second	encoder pul	se as the pos	sition comn	nand		
	4- Command pulse superi	mposed inter	nal positio	n planning a	as position c	ommand			
	5- Round pressure round sleeve label								
	6- Sine wave								

Related input function bits.

Functio n bits	Bit description
INFn.21	Position command prohibited, when valid, the position command is prohibited from being input to the servo
INFn.22	The position command is reversed. When it is valid, the position command is reversed and then input to the servo.
INFn.23	Pulse command prohibition, when valid, the pulse command prohibits input into the servo
INFn.35	Switch the source of the position command. When it is invalid, it is from the multi-segment position command; when it is valid, it is from the XY pulse.

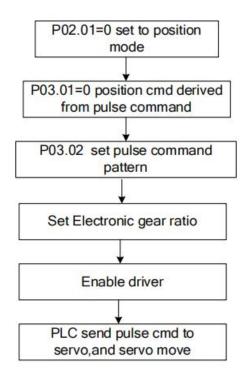
5.2.2 The position command comes from the pulse command

For the pulse command, there are five pulse forms, and which form to use needs to be set through P03.02.

Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method		
P03.02	Command pulse	0~4	-	Disable	Immediately	2	RW		
	shape			settings					
	When the position command is derived from the pulse command, it is used to select the pulse command								
	form.								
	0- Pulse plus direction po	sitive logic							
	1- Pulse plus direction ne	gative logic							
	2- AB pulse								
	3- CW+CCW positive lo	gic							
	4- CW+CCW negative lo	ogic							

The detailed description of the pulse command is shown in the following figure:

Pulse command form	input port	Forward rotation command	Reverse command
Pulse plus direction	X		
positive logic	Y	High level	Low level
Pulse plus direction	X		
negative logic	Y	Low level	High level
	X	90°	90°
AB pulse	Y		
CW+CCW positive	X	Low level	
logic	Y		Low level
CW+CCW negative	X	High level	
logic	Y		High level


For the pulse command, the pulse can be filtered by hardware to eliminate the influence of interference on the pulse command, and the filtering parameters can be set through P03.03.

Parameter No.	Parameter Description	Set range	units	Set method	Effecti ve way	Defaults	read and write method
P03.03	Command pulse hardware	0~32767	20ns	Disable	Immedi	50	RW
	filter, used to set the time of			settings	ately		
	pulse command hardware						
	filter.						

The count value of pulse command can be monitored through parameter P03.04.

Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method
P03.04	Command pulse count value, used to display the number of pulse commands.	-	-	-	-	-	RO

When the position comes from the pulse command, the parameter setting steps of the drive are as follows.

5.2.3 The position command is derived from the multi-segment position command plan

It is derived from the multi-segment position command, which means that the user pre-sets the mechanical position command, speed, acceleration/deceleration time, number of segments and other parameters to be run through the parameters, and then triggers the operation of the multi-segment position, and then the motor moves according to the set rules. Starting and stopping the multi-segment position is realized by operating INFn.27. When P13.92=0, the rising edge of INFn.27 starts the operation of the multi-segment position, and the falling edge of INFn.27 stops the operation of the multi-segment position; when P13.92=1, the rising edge of INFn.27 sets the operation of the multi-segment position until the execution of the multi-segment position is completed. The list of relevant parameters is as follows. It should be noted that the set position command refers to the mechanical position command.

Note: The position command of the multi-segment position will be multiplied by the electronic gear ratio, which is the position P00.13 of the motor encoder; but the speed setting of the multi-segment position is not affected by the electronic gear ratio

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effectiv e way	Defaults	read and write method
P13.01	Multi-segment	0~2	-	When the	Disable	Immediat	0	RW
	position working			position	settings	ely		
	mode			command				
	0- Downtime after a			comes from a				
	single run			multi-segment				
	1- Cycle run			position				
	2- DI switch operation,			command, it				
	read the value of			is used to set				
	INFn.31, INFn.30,			the				
	INFn.29, INFn.28 as the			multi-segment				
	segment number to run			position				
				operation				
				mode.				
P13.02	total number of	1~16	-	Sets the total	anytime	Immediat	16	RW
	segments			number of		ely		
				segments for				
				the position				
				instruction.				
P13.03	idle waiting time	0~1	-	When using	anytime	Immediat	1	RW
	unit			the		ely		

				1				
	0- milliseconds			multi-segment				
	1-seconds			position				
				function, the				
				unit of				
				waiting time.				
P13.04	surplus processing	0~1	-	Pause occurs	anytime	Immediat	0	RW
	method			when using		ely		
	0- Re-jump to the			the				
	first segment			multi-segment				
	position command			position				
	to run			function to				
	1- Start where the			run, and when				
	previous segment left			the				
	off			multi-segment				
				position				
				function is				
				resumed, set				
				the segment				
				number of the				
				starting				
				segment.				
P13.05	Absolute or relative	0~1	_	When running	anytime	Immediat	1	RW
1 13.03	position command	0 1		with	unythic	ely	1	1000
	settings			multi-segment		01)		
	0- absolute position			position				
	command			function, set				
	1- relative position			the type of				
	command			position				
	Command			command.				
D12.10	N 1 C 1	21.47.402.6	***			T 11 4	10000	DIV
P13.10	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
	commands at the	47 ~	units	pulse		ely		
	first segment	21474836		commands				
	position	47		at the first				
				segment				
				position				
P13.12	The running speed	0~32767	rpm	The running	anytime	Immediat	500	RW
	of the first segment			speed of the		ely		
	of the multi-segment			first segment				
	position command			of the multi-				
				segment				
				position				
				command				
P13.13	The acceleration	0~32767	ms	Set the time	anytime	Immediat	500	RW

time of the first for the first ely of the segment segment to multi-segment accelerate from 0 to position command rated speed. Actual acceleration time=change of speed command/rate d speed \times speed command acceleration time. P13.90 The deceleration 0~32767 The anytime Immediat 500 RW ms time of the first deceleration ely segment the time for the multi-segment first stage position command position to decelerate from the rated speed to 0. Actual deceleration time=change of speed command/rate d speed \times speed command deceleration time. P13.14 Waiting idle time for RW 0~32767 The waiting Immediat ms(s) anytime the end of the first time before ely of segment the running the multi-segment next stage of position command movement The unit of after the first this parameter is determined stage of the by P13.03. multi-stage position command is

completed. P13.15 Number of pulse -21474836 User The number Immediat 10000 RW anytime 47 ~ commands the units of position ely second segment 21474836 commands for 47 the second position segment. P13.17 The running speed 0~32767 The running anytime Immediat 500 RW rpm speed of the the ely second of segment the second multi-segment segment of position command the multi-segment position. P13.18 0~32767 500 RW The acceleration ms The time for anytime Immediat time of the second the second ely of segment the stage position to accelerate multi-segment from 0 to position command rated speed. P13.91 The deceleration 0~32767 The anytime Immediat 500 RW ms time of the second deceleration ely time for the segment of the second stage multi-segment position command position to decelerate from the rated speed to 0. P13.19 Waiting idle time for 0~32767 ms(s) The waiting anytime Immediat 1 RW end of the time before ely second segment of running the multi-segment next stage of position command movement after the second stage of the multi-stage position command is completed. P13.20 Number -21474836 The number Immediat 10000 RW pulse User anytime commands at the 47 ~ units of position ely third segment 21474836 commands for

60

	position	47		the third				
				segment.				
P13.22	The running speed	0~32767	rpm	The running	anytime	Immediat	500	RW
	of the third segment			speed of the		ely		
	of the multi-segment			third segment				
	position command			of the				
				multi-segment				
				position.				
P13.23	The acceleration and	0~32767	ms	Acceleration	anytime	Immediat	500	RW
	deceleration time of			time from 0 to		ely		
	the third segment of			rated speed in				
	the multi-segment			the third stage				
	position command			position; or				
	•			deceleration				
				time from				
				rated speed to				
				0.				
P13.24	Waiting idle time for	0~32767	ms(s)	The idle time	anytime	Immediat	1	RW
1 13.2 1	the end of the third	0 32101	1115(5)	that needs to	uny time	ely	1	1011
	segment of the			be waited		Ciy		
	multi-segment			after the third				
	position command			position				
	position command			command of				
				the				
				multi-segment				
				position				
				command				
				ends				
P13.25	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
	commands at the	47 ~	units	pulse		ely		
	fourth segment	21474836		commands at				
	position	47		the fourth				
				segment				
				position				
P13.27	The running speed	0~32767	rpm	speed of the	anytime	Immediat	500	RW
	of the fourth			fourth		ely		
	segment of the			segment of				
	multi-segment			the				
	position command			multi-segment				
				position.				
P13.28	The acceleration and	0~32767	ms	Acceleration	anytime	Immediat	500	RW
	deceleration time of			time from 0 to		ely		
	the fourth segment			rated speed in				

				T				
	of the multi-segment			the fourth				
	position command			stage position;				
				or				
				deceleration				
				time from				
				rated speed to				
				0.				
P13.29	Waiting idle time for	0~32767	ms(s)	The idle time	anytime	Immediat	1	RW
	the end of the fourth			that needs to		ely		
	segment of the			be waited				
	multi-segment			after the				
	position command			fourth				
				position				
				command of				
				the				
				multi-segment				
				position				
				command				
				ends				
P13.30	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
	commands at the	47 ~	units	pulse		ely		
	fifth segment	21474836		commands at				
	position	47		the fifth				
	pesmen	.,		segment				
				position				
P13.32	The running speed	0~32767	rpm	speed of the	anytime	Immediat	500	RW
	of the fifth segment	0 0 = 1 0 1	-1	fifth segment		ely		
	of the multi-segment			of the				
	position command			multi-segment				
	position communa			position.				
P13.33	The acceleration and	0~32767	ms	Acceleration	anytime	Immediat	500	RW
1 13.33	deceleration time of	0 32101	1115	time from 0 to	uny time	ely	200	1011
	the fifth segment of			rated speed in				
	the multi-segment			the fifth stage				
	position command			position; or				
	position command			deceleration				
				time from				
				rated speed to				
				0.				
P13.34	Waiting idla time for	0.22767	ma(a)		anytic	Immediat	1	DW
r13.34	Waiting idle time for	0~32767	ms(s)	The idle time	anytime		1	RW
	the end of the fifth			that needs to		ely		
	segment of the			be waited				
	multi-segment			after the fifth				

position command position command of the multi-segment position command ends RW P13.35 Number of -21474836 Number of 10000 pulse User anytime Immediat commands at the 47 ~ units pulse ely sixth 21474836 commands at segment 47 the sixth position segment position P13.37 500 The running speed 0~32767 speed of the anytime Immediat RW rpm of the sixth segment sixth segment ely of the multi-segment of the position command multi-segment position. P13.38 The acceleration and 0~32767 Acceleration Immediat 500 RW ms anytime deceleration time of time from 0 to ely the sixth segment of rated speed in multi-segment the sixth stage the position command position; or deceleration time from rated speed to 0. P13.39 The idle time 1 RW Waiting idle time for 0~32767 Immediat ms(s) anytime the end of the sixth that needs to ely of segment the be waited multi-segment after the sixth position command position command of the multi-segment position command ends P13.40 of Number of Immediat RW Number pulse -21474836 User anytime 10000 commands at the 47 ~ units pulse ely 21474836 seventh segment commands at position 47 the seventh segment

63

				position				
P13.42	The running speed	0~32767	rpm	speed of the	anytime	Immediat	500	RW
	of the seventh		_	seventh		ely		
	segment of the			segment of		·		
	multi-segment			the				
	position command			multi-segment				
				position.				
P13.43	The acceleration and	0~32767	ms	Acceleration	anytime	Immediat	500	RW
	deceleration time of			time from 0 to		ely		
	the seventh segment			rated speed in				
	of the multi-segment			the seventh				
	position command			stage position;				
				or				
				deceleration				
				time from				
				rated speed to				
				0.				
P13.44	Waiting idle time for	0~32767	ms(s)	The idle time	anytime	Immediat	1	RW
	the end of the			that needs to	-	ely		
	seventh segment of			be waited				
	the multi-segment			after the				
	position command			seventh				
				position				
				command of				
				the				
				multi-segment				
				position				
				command				
				ends				
P13.45	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
	commands at the	47 ~	units	pulse		ely		
	eighth segment	21474836		commands at				
	position	47		the eighth				
				segment				
				position				
P13.47	The running speed	0~32767	rpm	speed of the	anytime	Immediat	500	RW
	of the eighth		1	eighth		ely		
	segment of the			segment of				
	multi-segment			the				
	position command			multi-segment				
	1			position.				
P13.48	The acceleration and	0~32767	ms	Acceleration	anytime	Immediat	500	RW
		· · · · · · · ·	1	l			200	1

	the eight segment of			rated speed in				
	the multi-segment			the eight stage				
	position command			position; or				
				deceleration				
				time from				
				rated speed to				
				0.				
				Immediately				
P13.49	Waiting idle time for	0~32767	ms(s)	The idle time	anytime	Immediat	1	RW
	the end of the eight			that needs to		ely		
	segment of the			be waited				
	multi-segment			after the eight				
	position command			position				
				command of				
				the				
				multi-segment				
				position				
				command				
				ends				
P13.50	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
	commands at the	47 ~	units	pulse		ely		
	ninth segment	21474836		commands at				
	position	47		the ninth				
	r			segment				
				position				
P13.52	The running speed	0~32767	rpm	speed of the	anytime	Immediat	500	RW
110.02	of the ninth segment	0 52707	19	ninth segment		ely		10
	of the multi-segment			of the				
	position command			multi-segment				
	position communa			position.				
P13.53	The acceleration and	0~32767	ms	Acceleration	anytime	Immediat	500	RW
113.33	deceleration time of	V 32101	1113	time from 0 to		ely		10,7
	the ninth segment of			rated speed in		-13		
	the multi-segment			the ninth stage				
	position command			position; or				
	position communa			deceleration				
				time from				
				rated speed to				
				0.				
P13.54	Waiting idle time for	0~32767	ms(s)	The idle time	anytime	Immediat	1	RW
113.34	the end of the ninth	0~34101	1115(5)	that needs to	anythine	ely	1	IX VV
				be waited		Cly		
	segment of the							
	multi-segment			after the ninth				

					1			
	position command			position				
				command of				
				the				
				multi-segment				
				position				
				command				
				ends				
P13.55	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
	commands at the	47 ~	units	pulse		ely		
	tenth segment	21474836		commands at				
	position	47		the tenth				
				segment				
				position				
P13.57	The running speed	0~32767	rpm	speed of the	anytime	Immediat	500	RW
	of the tenth segment			tenth segment		ely		
	of the multi-segment			of the				
	position command			multi-segment				
				position.				
P13.58	The acceleration and	0~32767	ms	Acceleration	anytime	Immediat	500	RW
	deceleration time of			time from 0 to		ely		
	the tenth segment of			rated speed in				
	the multi-segment			the tenth stage				
	position command			position; or				
				deceleration				
				time from				
				rated speed to				
				0.				
P13.59	Waiting idle time for	0~32767	ms(s)	The idle time	anytime	Immediat	1	RW
	the end of the tenth			that needs to		ely		
	segment of the			be waited				
	multi-segment			after the tenth				
	position command			position				
				command of				
				the				
				multi-segment				
				position				
				command				
				ends				
P13.60	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
	commands at the	47 ~	units	pulse		ely		
	eleventh segment	21474836		commands at				
	position	47		the eleventh				
				segment				

				position				
P13.62	The running speed	0~32767	rpm	speed of the	anytime	Immediat	500	RW
	of the eleventh		•	eleventh		ely		
	segment of the			segment of				
	multi-segment			the				
	position command			multi-segment				
				position.				
P13.63	The acceleration and	0~32767	ms	Acceleration	anytime	Immediat	500	RW
	deceleration time of			time from 0 to		ely		
	the eleventh			rated speed in				
	segment of the			the eleventh				
	multi-segment			stage position;				
	position command			or				
				deceleration				
				time from				
				rated speed to				
				0.				
P13.64	Waiting idle time for	0~32767	ms(s)	The idle time	anytime	Immediat	1	RW
	the end of the			that needs to		ely		
	eleventh segment of			be waited				
	the multi-segment			after the				
	position command			eleventh				
	pesition communic			position				
				command of				
				the				
				multi-segment				
				position				
				command				
				ends				
P13.65	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
1 10.00	commands at the	47 ~	units	pulse	,	ely	10000	12
	twelfth segment	21474836		commands at				
	position	47		the twelfth				
	Pesition	.,		segment				
				position				
P13.67	The running speed	0~32767	rpm	speed of the	anytime	Immediat	500	RW
1 10.01	of the twelfth	32,07	1 22	twelfth		ely		10,77
	segment of the			segment of				
	multi-segment			the				
	position command			multi-segment				
	Position Communa			position.				
P13.68	The acceleration and	0~32767	ms	Acceleration	anytime	Immediat	500	[[[
1 13.00	deceleration time of	0 32101	1113	time from 0 to		ely	300	ן נננ
	acceleration time of	İ	I	11110 110111 0 10	1	L1 y	1	l

the twelfth segment rated speed in of the multi-segment the twelfth position command stage position; or deceleration time from rated speed to 0. P13.69 Waiting idle time for 0~32767 The idle time anytime Immediat RW ms(s) the end of the that needs to ely twelfth segment of be waited multi-segment after the position command twelfth position command of the multi-segment position command ends P13.70 Number pulse -21474836 User Number of anytime Immediat 10000 RW 47 ~ commands at the units pulse ely 21474836 thirteenth segment commands at position 47 the thirteenth segment position P13.72 RW The running speed 0~32767 speed of the Immediat 500 rpm anytime of the thirteenth thirteenth ely segment of the segment of multi-segment the position command multi-segment position. P13.73 RW The acceleration and 0~32767 500 ms Acceleration anytime Immediat deceleration time of time from 0 to ely thirteenth the rated speed in of the the thirteenth segment multi-segment stage position; position command or deceleration time from rated speed to The idle time P13.74 Waiting idle time for 0~32767 ms(s) anytime Immediat RW

	the end of the			that needs to		ely		
	thirteenth segment			be waited				
	of the multi-segment			after the				
	position command			thirteenth				
				position				
				command of				
				the				
				multi-segment				
				position				
				command				
				ends				
P13.75	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
	commands at the	47 ~	units	pulse		ely		
	fourteenth segment	21474836		commands at				
	position	47		the fourteenth				
				segment				
				position				
P13.77	The running speed	0~32767	rpm	speed of the	anytime	Immediat	500	RW
	of the fourteenth			fourteenth		ely		
	segment of the			segment of				
	multi-segment			the				
	position command			multi-segment				
				position.				
P13.78	The acceleration and	0~32767	ms	Acceleration	anytime	Immediat	500	RW
	deceleration time of			time from 0 to		ely		
	the fourteenth			rated speed in				
	segment of the			the fourteenth				
	multi-segment			stage position;				
	position command			or				
				deceleration				
				time from				
				rated speed to				
				0.				
P13.79	Waiting idle time for	0~32767	ms(s)	The idle time	anytime	Immediat	1	RW
	the end of the			that needs to		ely		
	fourteenth segment			be waited				
	of the multi-segment			after the				
	position command			fourteenth				
				position				
				command of				
				the				
				multi-segment				
				position				
•	•	•	•	•	•	•		

				command				
				ends				
P13.80	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
	commands at the	47 ~	units	pulse		ely		
	fifteenth segment	21474836		commands at				
	position	47		the fifteenth				
				segment				
				position				
P13.82	The running speed	0~32767	rpm	speed of the	anytime	Immediat	500	RW
	of the fifteenth			fifteenth		ely		
	segment of the			segment of				
	multi-segment			the				
	position command			multi-segment				
				position.				
P13.83	The acceleration and	0~32767	ms	Acceleration	anytime	Immediat	500	RW
	deceleration time of			time from 0 to		ely		
	the fifteenth			rated speed in				
	segment of the			the fifteenth				
	multi-segment			stage position;				
	position command			or				
	r			deceleration				
				time from				
				rated speed to				
				0.				
P13.84	Waiting idle time for	0~32767	ms(s)	The idle time	anytime	Immediat	1	RW
113.01	the end of the	0 32707	1113(3)	that needs to		ely	1	1000
	fifteenth segment of			be waited				
	the multi-segment			after the				
	position command			fifteenth				
	position command			position				
				command of				
				the				
				multi-segment				
				position				
				command				
D12.07	No	21.47.402.6	1,1	ends	4.	Torre 11 /	10000	DII.
P13.85	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
	commands at the	47 ~	units	pulse		ely		
	sixteenth segment	21474836		commands at				
	position	47		the sixteenth				
				segment				
				position				
P13.87	The running speed	0~32767	rpm	speed of the	anytime	Immediat	500	RW

	C 41							
	of the sixteenth			sixteenth		ely		
	segment of the			segment of				
	multi-segment			the				
	position command			multi-segment				
				position.				
P13.88	The acceleration and	0~32767	ms	Acceleration	anytime	Immediat	500	RW
	deceleration time of			time from 0 to		ely		
	the sixteenth			rated speed in				
	segment of the			the sixteenth				
	multi-segment			stage position;				
	position command			or				
				deceleration				
				time from				
				rated speed to				
				0.				
P13.89	Waiting idle time for	0~32767	ms(s)	The idle time	anytime	Immediat	1	RW
	the end of the			that needs to		ely		
	sixteenth segment of			be waited				
	the multi-segment			after the				
	position command			sixteenth				
	F			position				
				command of				
				the				
				multi-segment				
				position				
				command				
				ends				
P13.92	Multi-segment	0~3	_	0: The rising	anytime	Immediat	3	RW
113.72	position command	0 2		edge of INFn.27	,	ely		1011
	trigger signal type			triggers the				
	BIT0-INFn.27 Rising			multi-segment				
	edge triggers to start			position, and				
	running multi-segment			the falling edge				
	position; falling edge			stops executing				
	triggers to stop running			the				
	multi-segment position							
				multi-segment				
	BIT1-INFn.27 Rising			position. When				
	edge triggers set to run			the				
	multi-segment position,			multi-segment				
	falling edge does not			position comes				
	work			from DI, a				
				change in DI				
				automatically				

triggers the
multi-segment
position.
1: INFn.27
rising edge
trigger, not
stop
2: When the
multi-segment
position
comes from
DI, the DI
change does
not
automatically
trigger the
multi-segment
position, and
the position
execution will
only be
triggered
when INFn.27
is
re-triggered.
3: INFn.27
rising edge
trigger, not
stop, when the
multi-segment
position
comes from
DI, the DI
change does
not
automatically
trigger the
multi-segment
position, only
when INFn.27
is re-triggered
will the
position

				execution be				
				triggered				
P13.93	Condition for	0~1	-	Set the	anytime	Immediat	0	RW
	sending the next			sending		ely		
	command			conditions of				
	0- You must wait for			the next				
	the previous position to			command				
	complete the output and							
	then delay the idle time							
	before sending the next							
	position command							
	1- After the previous							
	position command is							
	sent, wait for the idle							
	time to directly send the							
	second position							
	command							

The absolute position command refers to the position of the size of the position command relative to the origin, and the relative position command refers to the position of the size of the position command relative to the current position. Therefore, the origin return must be performed before the absolute position command is executed, otherwise a fault will be reported.

For example, suppose that 3 absolute position commands are executed, the size of the first position command is set to 1000, the size of the second position command is set to 2000, and the size of the third position command is set to 0. The zero return operation is performed first, and then the multi-stage position is triggered. The motor first moves forward 1000, then forward 1000, and then reversely moves 2000, and returns to the zero point.

As another example, assuming that three relative position commands are taken, the first position command is set to 1000, the second position command is set to 2000, and the third position command is set to -1000. After triggering the multi-segment position, the motor first moves forward 1000, then forwards 2000, and then reverses 1000.

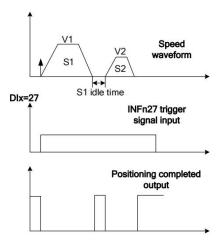
If you want to use the multi-segment position command, in addition to setting P03.01 and P13.01 first, you also need to configure the DIx function control register and set it to INFn.27 (triggering the multi-segment position function number). Then control the effective level of DIx to trigger the execution of multi-segment position commands at the rising edge, and stop the execution of multi-segment position commands at the falling edge (when P13.92=0). Selecting the segment number is similar, configure the DIx function control register, set the corresponding level, and then trigger.

The relevant input function bits are as follows.

Function bits	Bit description						
INFn.27	Trigger multi-segment position command						
	The rising edge triggers the execution of the multi-segment position command, and the falling edge						
	stops the execution of the multi-segment position command						
	Or only the rising edge triggers the execution of multi-segment position commands, and the falling						
	edge does not act. Specific reference P13.92						
INFn.28	Multi-segment position command segment number selection 0						
INFn.29	Multi-segment position command segment number selection 1						
INFn.30	Multi-segment position command segment number selection 2						
INFn.31	Multi-segment position command segment number selection 3						
INFn.32	Multi-segment position direction selection, when valid, the position command set for multi-segment						
	position is reversed						

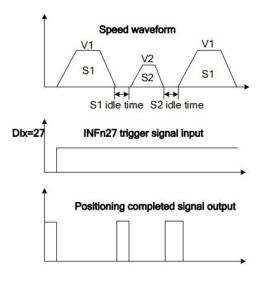
According to the status of INFn28~31.

Multi-segment running segment number

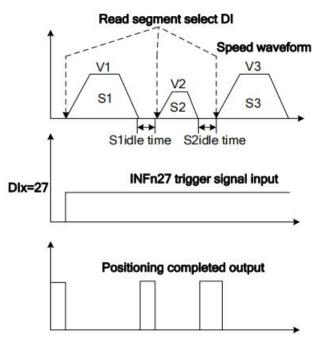

= INFn.31*8 + INFn.30*4 + INFn.29*2 + INFn.28*1 +1

See the table below for details.

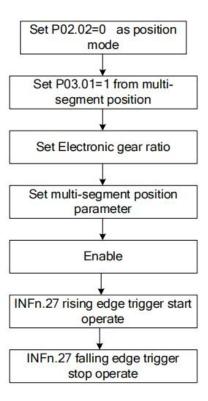
INFn.31	INFn.30	INFn.29	INFn.28	run
				segment
				number
0	0	0	0	1
0	0	0	1	2
0	0	1	0	3
0	0	1	1	4
0	1	0	0	5
0	1	0	1	6
0	1	1	0	7
0	1	1	1	8
1	0	0	0	9
1	0	0	1	10
1	0	1	0	11
1	0	1	1	12
1	1	0	0	13
1	1	0	1	14
1	1	1	0	15
1	1	1	1	16


5.2.3.1 Stop after a single run

In this mode, the motor runs n positions of position commands, the idle time of each position command can be set independently, and INFn.27 starts/stops running multi-stage position mode (Note: when P13.92=0, the rising edge of INFn.27 starts multi-stage position mode Position running, the falling edge of INFn.27 stops the running of multi-segment positions; when P13.92=1, the rising edge of INFn.27 starts the running of multi-segment positions, and the falling edge does not act). Its running speed curve is as follows. The total number of segments is assumed to be 2.


5.2.3.2 Cycle run

In this mode, the motor automatically jumps to the first position command after running the n-stage position command. The idle time of each position command can be set independently. INFn.27 starts/stops the multi-stage position mode (Note: when P13 When .92=0, the rising edge of INFn.27 starts the operation of the multi-segment position, and the falling edge of INFn.27 stops the operation of the multi-segment position; when P13.92=1, the rising edge of INFn.27 sets the operation of the multi-segment position, and the falling edge no action). Its running speed curve is as follows. The total number of segments is assumed to be 2.



5.2.3.3 DI switch

In this mode, once the multi-segment position is triggered, the driver reads the valid status of INFn.31, INFn.30, INFn.29, and INFn.28 to select a certain position command., and read the valid state of INFn.31, INFn.30, INFn.29, INFn.28 again to select another position command, if the valid state changes, select another position command to run. This is repeated until it is triggered to stop the operation of the multi-segment position, and then the operation is stopped.

5.2.3.4 The position command comes from the setting steps of the multi-segment position

5.2.4 Electronic gear ratio

(The meaning of the electronic gear ratio is the coefficient of converting the user position command unit into the motor encoder unit. namely)

User position command $\times \frac{\text{Electronic gear ratio numerator}}{\text{Electronic gear ratio denominator}} = \text{Location of motor encoder}$

For example, assuming that the pulse tracking mode is used, the user PLC sends XY pulses to the servo driver, which stipulates that a pulse motor must travel 1 micron, but the actual motor needs to rotate 100 pulses to travel 1 micron, then the electronic gear ratio (numerator ratio denominator) is 100.

If the numerator of the electronic gear ratio is set to 0, then how many pulses the motor needs to make one revolution depends on the denominator.

For example, the encoder resolution of the motor is 10000, and the denominator of P03.10 electronic gear ratio 1 is set to 5000. When the motor receives 10000 pulses, the motor rotates twice.

If the numerator of the electronic gear ratio is not 0, the motor encoder position is calculated according to the above formula.

The system has two sets of electronic gear ratios to choose from, and Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set metho d	Effective way	Defaults	read and write method
P03.08	Electronic gear ratio 1 numerator	1~214748 3647	-	Set the numerator of the first group electronic gear ratio for the division/ multiplicatio n frequency of the	anytime	Immediate ly	0	RW
P03.10	Electronic gear ratio 1 denominator	1~214748 3647	-	position command. Set the denominator of the first group of	anytime	Immediate ly	1000	RW

				electronic				
				gear ratios				
				for the				
				division/				
				multiplier				
				frequency of				
				the position				
				command.				
P03.12	Electronic gear	1~214748	-	Set the	anytime	Immediate	0	RW
	ratio 2 numerator	3647		numerator of		ly		
				the first				
				group				
				electronic				
				gear ratio for				
				the division/				
				multiplicatio				
				n frequency				
				of the				
				position				
				command.				
P03.14	Electronic gear	1~214748	-	Set the	anytime	Immediate	1000	RW
	ratio 2 denominator	3647		denominator		ly		
				of the second				
				group of				
				electronic				
				gear ratios				
				for the				
				division/mult				
				iplier				
				frequency of				
				the position				
				command.				

The system defaults to electronic gear ratio 1. Multiple electronic gear ratios can also be switched through INFn.24 and INFn.56. The switching relationship is as follows.

INFn.56	INFn.24	Actual electronic gear ratio
invalid	invalid	Electronic gear ratio l numerator Electronic gear ratio l denominator
invalid	valid	Electronic gear ratio 2 numerator Electronic gear ratio 2 denominator

valid	invalid	Electronic gear ratio 1 numerator Electronic gear ratio 2 denominator
valid	valid	Electronic gear ratio 2 numerator Electronic gear ratio 1 denominator

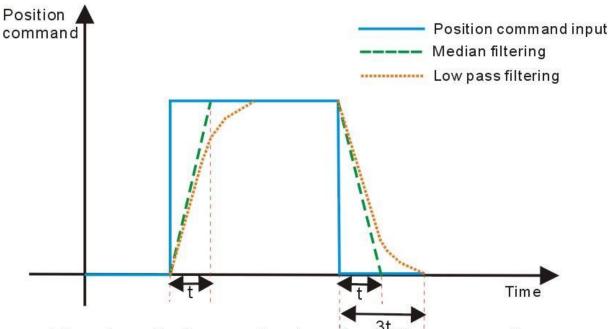
5.2.5 Electronic gear ratio smooth switching function

When the electronic gear ratio changes greatly, it is easy to cause sudden changes in the motor speed. The internal electronic gear ratio can be switched smoothly through the P03.16 electronic gear ratio switching filter time constant.

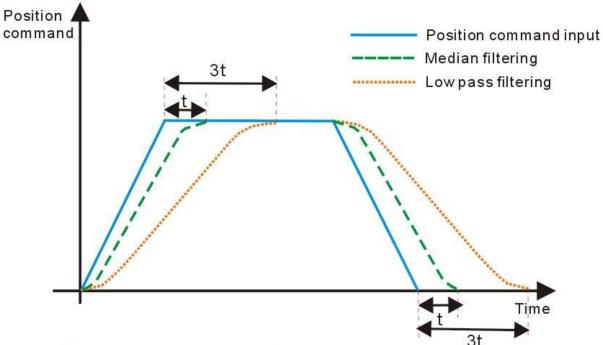
Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P03.16	Electronic gear ratio	0~32767	ms	Set the	anytime	Immediatel	0	RW
	switching time			electronic		у		
	constant			gear ratio				
				switching				
				time to				
				make the				
				internal				
				electronic				
				gear				
				ratio				
				smoothly				
				switch				

5.2.6 Position command filter function

The position command filtering is to filter the position command. Consider adding positional command filtering in the following situations:


In the following situations, consider adding position command filtering:

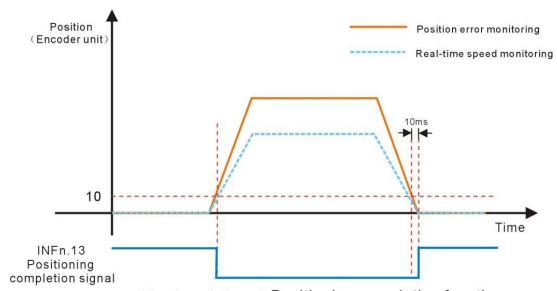
- > The position command output by the host controller is not accelerated or decelerated.
- > The pulse command frequency is low;
- When the electronic gear ratio is 10 times or more.


There are two filtering methods to choose from, one is a low-pass filter and the other is a median filter.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P03.06	Position command given median filter time constant	0~128	ms	Set the median filter time constant for the position command (encoder unit).	set when stop	Immediate ly	0	RW
P03.07	Position command given low-pass filter time constant	0~32767	ms	Set the low-pass filter time constant of the position command (encoder unit).	set when stop	Immediate ly	20	RW

The larger the filter time constant is set, the more severe the position command lags and the greater the position error during operation. The waveform is as follows.

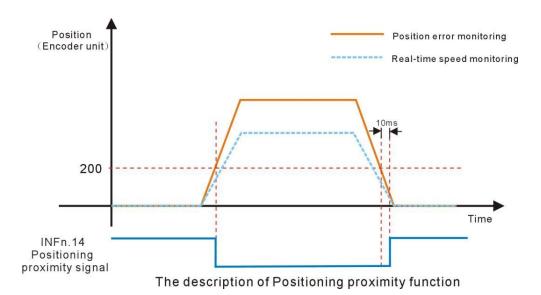
The schematic diagram of rectangular position command low pass filtering and median filtering



The schematic diagram of trapezoidal position command low pass filtering and median filtering

5.2.7 Positioning complete/proximity function

The positioning completion function means that the absolute value of the position error P03.17 satisfies the user-set condition P03.45 and maintains the time threshold (ms) set by P03.49, and it can be considered that the positioning is completed in the position control mode. At this time, the servo drive can output a positioning completion signal, and the host computer can confirm that the positioning of the servo drive is completed when the signal is received. For the output signal of positioning completion/positioning approaching, you can directly configure the DOx function control register, and the signal is monitored through the DO terminal valid state (P06.49).


As shown in the figure below, when the positioning completion threshold is set to 10 units (10*0.0001 cycles), and the hold time is set to 10ms, the DO outputs the positioning completion signal.

The description of Positioning completion function

The positioning close function means that the absolute value of the position error P03.17 satisfies the condition P03.47 set by the user, and the time threshold (ms) set by P03.49 is maintained, and the positioning is considered to be close in the position control mode. At this time, the servo driver can output a positioning close signal, and the host constroller receives the signal to confirm that the servo driver is positioned close.

As shown in the figure below, the positioning close threshold is set to 200 pulses, and when the hold time is set to 10 ms, the DO output the positioning signal.

Related parameters are as follows.

ICC	elated parameters are as	10110 1151							
Parame ter No.	Parameter Description	Set range	units	Set method	Effective way	Default s	read and write method		
	Positioning completion signal output condition	0~4	-	anytime	Immediatel y	0	RW		
	In the position control mode, when the servo is running, the absolute value of the position error P03.17 is within the								
	set value of P03.46 (positioning	g completion th	reshold), and a	fter P03.49 (pos	itioning compl	etion/proxin	nity time		
	threshold) is maintained, the se	rvo will be Out	put positioning	completion sign	nal; The output	t condition o	f the		
	positioning completion signal of	can be set by P0	3.45.						
	0- Output when the position er	ror is less than	the positioning	completion thre	eshold, otherwi	se clear the	output;		
P03.45	1- Output when The position e	error is smaller t	han the positio	ning completion	threshold and	the speed co	ommand in		
	position mode P03.95 is zero, otherwise the output is cleared;								
	2- Output when The position error is less than the positioning completion threshold and the filtered speed command								
	in position mode P03.96 is zero, otherwise the output is cleared;								
	3- Output when the position er	ror is less than	the positioning	completion thre	eshold and the	speed comm	and in		
	position mode P03.95 is zero.	Clear output wh	en speed comm	nand in position	mode P03.95 i	s not zero			
	4- The sending of multi-segm	ent position con	nmands is com	pleted, and the p	osition error is	s less than th	ie		
	positioning completion thresho	ld							
	positioning completion	0~32767	0.0001	4:	Immediatel	10	RW		
P03.46	threshold	0~32/0/	round	anytime	у	10	KW		
P03.40	Set the positioning completion	threshold (The	positioning cor	npletion signal	is valid only w	hen the serv	o driver is in		
	position control mode and is in	the running sta	te)						
	Positioning close signal	0~3		anytime	Immediatel	0	RW		
	output condition	0~3	-	anythic	у	U	ΚW		
P03.47	In the position control mode, when the servo is running, the absolute value of the position error P03.17 is within the								
103.47	set value of P03.48 (positioni	ng proximity t	hreshold), and	when P03.49 (positioning co	mpletion/pr	oximity time		
	threshold) is maintained, the	servo can outp	ut Positioning	proximity signa	il; the output of	conditions o	f positioning		
	proximity signal can be set thro	ough P03.47.							

	0- Output when the position en	rror is less than	the positioning	close threshold	, otherwise cle	ar the outpu	t;
	1- Output when The position	error is small	er than the po	sitioning close	threshold and	I the speed	command in
	position mode P03.95 is zero, o	otherwise the ou	tput is cleared;				
	2- Output when The position	error is less tha	an the position	ing close thresh	old and the fil	ltered speed	command in
	position mode P03.96 is zero, o	otherwise the ou	tput is cleared;				
	3- Output when the position	error is less tha	n the positioni	ng close thresh	old and the spe	eed commar	nd in position
	mode P03.95 is zero. Clear out	put when speed	command in p	osition mode P(3.95 is not zer	ю	
	positioning close	0~32767	0.0001	,.	Immediatel	100	DW
	threshold	0~32/6/	round	anytime	у	100	RW
P03.48	Set the threshold of the absolut	te value of the p	osition deviation	on when the serv	vo drive output	s the position	ning
	approach signal (the positionin	g approach thre	shold generally	needs to be gre	eater than the p	ositioning c	ompletion
	threshold).						
	positioning completion/	0~32767		4:	Immediatel	10	DW
P03.49	close time threshold	0~32707	ms	anytime	у	10	RW
P03.49	When the position error is less	than the positio	ning completion	n/proximity thr	eshold, and the	time thresh	old is
	maintained, the positioning cor	mpletion/proxin	nity signal is ou	itput.			
D02 17			0.0001				D.O.
P03.17	position error	-	round	-	-	-	RO
D02.05	the speed command in						DO.
P03.95	position mode	-	rpm	-	-	-	RO
	the filtered speed						
P03.96	command in position	-	rpm	-	-	-	RO
	mode						

Related output function bits are as follows.

Function bits	Bit description
OUTFn.13	Positioning completion signal output, active when Positioning completion
OUTFn.14	Positioning close signal output, active when Positioning close

5.2.8 Pulse frequency division output function

Servo pulse frequency division output function is divided into two types: open-collector signal output and differential signal output.

When the output signal is the open collector signal, the servo can output the motor encoder pulse by setting P06.40. The motor pulse can be divided and output, and the maximum frequency of the motor pulse output is 3 KHz, and the output port is DO1 and DO2. When the output signal is a differential signal, the full-closed function must be turned off (setting P03.31=0), the servo can output the command pulse or the motor encoder pulse, the output pulse type is set by P03.78, and the output port is 37, 38, 39, 40 pins in CN3. For

differential signals, only the motor pulse can be divided.

The division factor of the motor pulse output can be set by P03.79. The larger the division factor, the lower the output pulse frequency. For example, P03.78 sets the output

motor pulse, and P03.79 is set to 2, then when the motor rotates 2 motor pulses, the terminal outputs 1 pulse

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P03.78	Selection of servo pulse output source	0~2	-	Set the output source of the pulse output port.	anytime	reset valid	0	RW
P03.79	O-output motor pulse; 1-ou The frequency division factor of	1~65535	pulse; 2-	no output, as inpu	anytime	reset valid		RW
	the output pulse If the encoder type of the when the pulse output terr represents the number of poutput port outputs a Z pocommand pulse. Increment encoder pulse output; absolute and the pulse output 10000	ninal outputs on oulses output by int pulse. This v tal encoder is re- olute encoder is	the pulse. It the pulse ralue is or	f the encoder type coutput terminal aly valid for moto ded to be 1, whice	when the mot when the moor pulse freq	or is an absolu otor rotates one uency division t the output pu	te value, the ce, and the Z but invalid lse is equal t	value point for to the
P03.80	Output direction of pulse frequency division Set the effective level type	•	-	ed pulse output.	anytime Only valid f	reset valid or motor pulse	0 es, invalid fo	RW r command
P06.40	pulses. 0-forward output, DO1DO2 function control register	1-reverse output 0~2	-	Set the output parameter type of DO1DO2.	anytime	Immediate ly	0	RW
	0- DO1 and DO2 are outp 1- DO1, DO2 output A and 2- DO1 outputs the Z poin	d B pulses respe	ectively					

5.2.9 Z point pulse output function

The servo can set DO1 to output the Z point pulse signal through P06.40. The Z point pulse is an open-collector signal output, and its effective level width is 5ms.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P03.81	Z pulse polarity	0~1	-	Set the	anytime	Immediate	0	RW
	selection			output level		ly		
	0- forward output			when the				
	1- reverse output			pulse output				
				terminal Z				
				pulse is				
				valid.				

5.2.10 Homing

The servo has multiple home zeroing modes. The user can choose the appropriate origin return mode according to the site conditions and process requirements. The parameters related to zero return are as follows.

Remarks: Before using the zero return function, you need to set the enable software and hardware limit P03.73 to 0 or 2. When it is set to 1, triggering the forward and reverse limit will cause the servo motor to directly enter the fault protection state and cannot continue to complete the zero return. operate..

Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method
P03.51	Homing method Set the origin return mode and trigger signal source.	0~99	-	Disable to set	Immediate ly	0	RW
P03.52	Homing acceleration and deceleration time	0~32767	ms	anytime	Immediate ly	500	RW
		Set the time for the motor to accelerate from 0 to the rated speed when returning to the origin. Therefore, when the home is running, the actual acceleration time of the motor $t = P03.53/rated$ speed* ($P03.52$)					
P03.53	The first segment of zero return speed	0~32767	rpm	anytime	Immediate ly	500	RW
P03.33	It is also called the high-speed searching for the deceleration	•		e origin is ret	urned to zero,	the motor s	peed when
P03.54	The second segment of zero return speed	0~32767	rpm	anytime	Immediate ly	100	RW
103.34	Also called low-speed zero re origin is returned to zero.	eturn speed, set t	he motor spo	eed when sear	ching for the	origin signal	when the

P03.55	Offset after zero return (set the value of the absolute position of the motor after the zero return.)	-21474836 47~ 214748364 7	User units	anytime	Immediate ly	0	RW
	When BIT9 of P01.46 is set to directly sets the origin as the the origin is zero, and the motors.	offset position. V	When the BI	T9 of P01.46	-	_	-
P03.57	Origin range(when the position of the motor encoder is within the origin range, and the speed given P09.89=0 in the position loop mode, the time of P03.49 is maintained, and the zero return completion signal is output.)	0~32767	0.0001 Round	anytime	Immediate ly	5	RW

The associated input function bits are as follows.

Function bits	Bit description
INFn.26	Trigger Homing
INFn.34	Zero point switch input
INFn.43	positive limit switch
INFn.44	negative limit switch

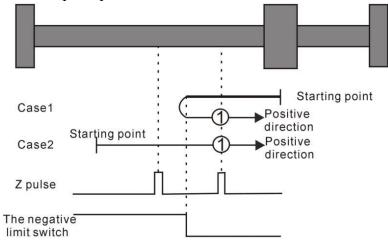
The associated output function bits are as follows.

Function bits	Bit description
OUTFn.15	Homing completes output. When the encoder position of the motor is within the Zero point
	range, and the speed reference in the position mode P09.89=0, the time of P03.49 is also
	maintained, and the Homing completes output signal is output.

The vec servo has a variety of homing method to choose from, including:

- (1) Method 1: Depends on the negative position limit switch and Z index pulse;
- (2) Method 2: Depends on the positive position limit switch and Z index pulse;
- (3) Method 3-Method 6: Depends on the zero position switch and Z index pulse;
- (4) Method 7-Method 10: Depends on the zero position switch, positive position limit switch and Z index pulse;
- (5) Method 11 Method 14: Depends on the zero position switch, negative position limit

switch

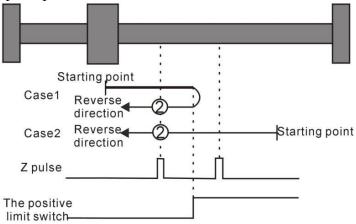

and Z index pulse

- (6) Method 17: Depends on the negative position limit switch
- (7) Method 18: Depends on the positive position limit switch
- (8) Method 19 Method 22: Depends on the zero position switch
- (9) Method 23 Method 26: Depends on the zero position switch, positive position limit switch
- (10) Method 27 Method 30: Depends on the zero position switch, negative position limit switch
- (11) Method 33 Method 34: Depends on the Z pulse
- (12) Method 35: Depends on the current position

Homing method 1: Homing on the negative limit switch and Z index pulse

Case 1: When the user triggers the execution of homing, if the negative limit switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the negative limit switch is in the high level, the moving direction changes and the starts to move at second speed; the position where the first Z index pulse is encountered when the negative

Case 2: When the user triggers the execution of homing, if the negative limit switch state is at the high level, the axis starts to move in the positive direction at the second speed, and the first Z index pulse is encountered when the negative limit switch state is at the low level. The location is the zero point position.


Homing method 1: Homing on the negative limit switch and Z index pulse

Homing method 2: Homing on the positive limit switch and Z index pulse

Case 1: When the user triggers the execution of homing, if the positive limit switch state is in the low level, the axis starts to move forward at the first speed, and when the positive limit switch is in the high level, the moving direction changes and moving speed changes at the second speed, the position where the first Z index pulse is encountered when the positive limit switch state is low is the zero point position.

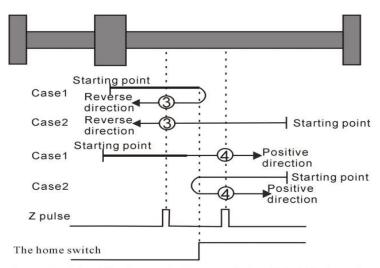
Case 2: When the user triggers the execution of homing, if the positive limit switch state is at the high level, the axis starts the reverse motion directly at the second speed, and the first

Z index pulse is encountered when the positive limit switch state is at the low level. The location is the zero point position.

Homing method 2: Homing on the positive limit switch and Z index pulse

Homing method $3 \sim 6$ Homing on the home switch and the Z index pulse

Homing method 3


Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the origin switch is in the high level, the motion direction changes and starts to move at the second speed. The position where the first Z index pulse is encountered when the home switch state is in the low level is the zero point position.

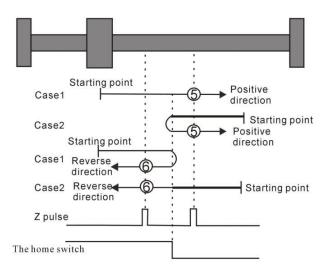
Case 2: When the user triggers the execution of homing, if the home switch state is at the high level, the axis starts the reverse motion directly at the second speed, and the position where the first Z index pulse is encountered when the home switch state is at the low level is the zero point position.

Homing method 4

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the home switch is in the high level, the second speed is reversed. The position of a Z index pulse is the zero point position.

Case 2: When the user triggers the execution of homing, if the home switch state is at the high level, the axis starts the reverse motion directly at the second speed. When the home switch is in the low level, the motion direction changes and starts to move at the first speed. When the home switch is in the high level again, it moves in the reverse direction at the second speed, and the position where the first Z index pulse is encountered is the zero point position.

Homing method $3 \sim 4$ Homing on the home switch and the Z index pulse


Case 1: When the user triggers the execution of homing, if the home switch state is at the high level, the axis starts to move forward at the second speed, and the position where the first Z index pulse is encountered when the home switch state is low is the zero point position.

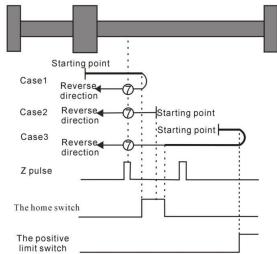
Case 2: When the user triggers to perform homing, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the home switch is in the high level, the motion direction changes and starts to move at the second speed. The position where the first Z index pulse is encountered when the home switch state is low is the zero point position.

Homing method 6

Case 1: When the user triggers the execution of homing, if the home switch state is in the high level, the axis starts to move forward in the second speed. When the home switch is in the low level, the motion direction changes and starts to move at the first speed. When the home switch is in the high level again, it moves forward in the second speed, and the position where the first Z index pulse is encountered is the zero point position.

Case 2: When the user triggers to perform zero return, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the home switch is in the high level, the motion direction changes and starts to move at the second speed. The position where the first Z index pulse is encountered is the zero point position.

Homing method 5~6 Homing on the home switch and the Z index pulse

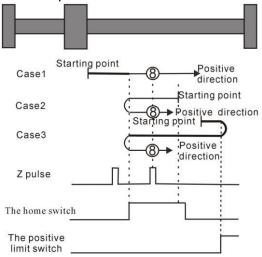

Homing method 7 \sim 10 Homing on the home switch, positive limit switch, and Z index pulse

Homing method 7

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the home switch is in the high level, the motion direction changes and starts to move at the second speed. The position where the first Z index pulse is encountered when the home switch state is low is the zero point position.

Case 2: When the user triggers the execution of the zero return, if the origin switch state is at a high position, the axis directly starts to move in the reverse direction at the second speed. When the origin switch state is at a low level, the position where the first Z pulse is encountered is the origin position.

Case 3: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the home switch is in the low level and the positive limit switch is in the high level, the moving direction changes. The movement starts at the first speed, and when the home switch is in the high level, the movement starts at the second speed, and the position where the first Z index pulse is encountered when the home switch state is low is the zero point position.



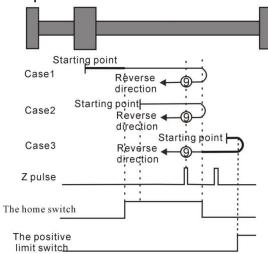
Homing method 7 Homing on the home switch, positive limit switch, and Z index pulse

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the home switch is in the high level, the second speed starts to move. The position of the first Z index pulse is the zero point position.

Case 2: When the user triggers the execution of homing, if the home switch state is at the high level, the axis directly starts the reverse motion at the second speed. When the home switch is in the low level, the motion direction changes and starts to move at the second speed. When the home switch is in the high level, the position where the first Z index pulse is encountered is the zero point position.

Case 3: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the home switch is in the low level and the positive limit switch is in the high level, the moving direction changes. When the home switch is in the high level, it still moves at the first speed. The motion direction changes when the home switch state is low, and then starts to move at the second speed. When the home switch in the high level, and the position where the first Z index pulse is encountered is the zero point position.

Homing method 8 Homing on the home switch, positive limit switch, and Z index pulse

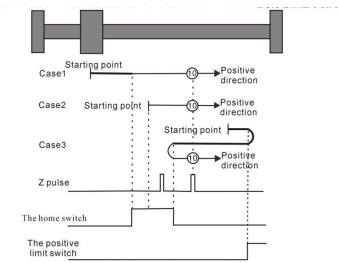

Homing method 9

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move at the first speed. When the home switch is in the high level, the motion starts at the second speed. When the switch is in the low level, the direction of motion changes and continues to move at the second speed. When the home switch is in the high level, the position where the first Z index pulse is encountered is the zero point position.

Case 2: When the user triggers the execution of the zero return, if the origin switch state is at a high level, the axis starts to move forward at the second speed, until when the origin switch is at a low level, the movement direction changes and starts to move at the second speed, when the origin switch is at a high position, the position where the first Z pulse is encountered is the origin position.

Case 3: When the user triggers the execution of zero return, if the state of the origin switch is in the low position, the axis starts to move forward at the first speed.

When the origin switch is in the low position and the forward operation limit switch is in the high position, the movement direction changes and Start moving at the first speed, when the origin switch is at a high position, start moving at the second speed, and the position where the first Z pulse is encountered is the home position.


Homing method 9 Homing on the home switch, positive limit switch, and Z index pulse

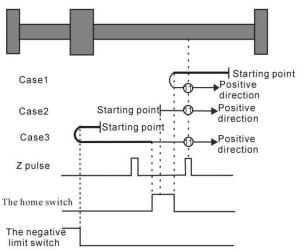
Homing method 10

Case 1: When the user triggers the execution of the zero return, if the origin switch state is at a low level, the axis starts to move forward at the first speed. When the origin switch is at a high level, it starts to move at the second speed. When the switch is in the low position, the position where the first Z pulse is encountered is the home position.

Case 2: When the user triggers the execution of homing, if the origin switch state is at a high position, the axis starts to move forward at the second speed. When the origin switch is at a low position, the position where the first Z pulse is encountered is the origin position .

Case 3: When the user triggers the execution of zero return, if the state of the origin switch is in the low position, the axis starts to move forward at the first speed. When the origin switch is in the low position and the forward operation limit switch is in the high position, the movement direction changes and Start moving at the first speed, when the origin switch is at a high position, the movement direction changes again and starts moving at the second speed. When the home switch is at a low position, the position where the first Z pulse is encountered is the home position.

Homing method 10 Homing on the home switch, positive limit switch, and Z index pulse

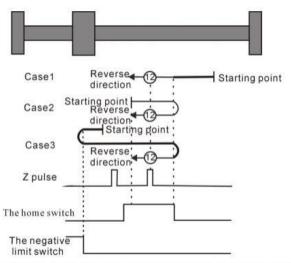

Homing method 11 \sim 14 Homing on the home switch, the negative limit switch and the Z index pulse

Homing method 11

Case 1: When the user triggers the execution of the zero return, if the origin switch state is at a low level, the axis starts to move in the reverse direction at the first speed. When the origin switch is at a high level, the movement direction changes and starts to move at the second speed. The position where the first Z pulse is encountered when the home switch state is low is the home position.

Case 2: When the user triggers the execution of the zero return, if the origin switch state is at a high position, the axis directly starts to move forward at the second speed, and the position where the first Z pulse is encountered when the origin switch state is at a low position is the origin position.

Case3: When the user triggers the execution of the zero return, if the origin switch state is in the low position, the axis starts to move in the reverse direction at the first speed. When the origin switch is in the low position and the reverse operation limit switch is in the high position, the movement direction changes and Start moving at the first speed, when the origin switch is at a high position, start moving at the second speed, and the position where the first Z pulse is encountered when the home switch is at a low state is the home position.

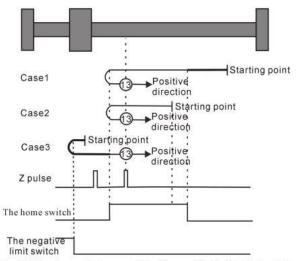


Homing method 11 Homing on the home switch, the negative limit switch and the Z index pulse

Case 1: When the user triggers the execution of the zero return, if the origin switch state is at a low level, the axis starts to move in the reverse direction at the first speed. When the origin switch is at a high level, it starts to move at the second speed. The position of the Z pulses is the origin position.

Case 2: When the user triggers the execution of the zero return, if the origin switch state is at a high level, the axis directly starts to move forward at the second speed. When the origin switch is at a low level, the movement direction changes and starts to move at the second speed. , when the origin switch is at a high position, the position where the first Z pulse is encountered is the origin position.

Case 3: When the user triggers the execution of zero return, if the state of the origin switch is in the low position, the axis starts to move in the reverse direction at the first speed. When the origin switch is in the low position and the reverse operation limit switch is in the high position, the movement direction changes and It starts to move at the first speed. When the origin switch is at a high position, it still moves at the first speed. When the home switch is at a low state, the movement direction changes and starts to move at the first speed. When it encounters the home switch When it is in the high position, it starts to move at the second speed, and the position where it encounters the first Z pulse is the origin position.

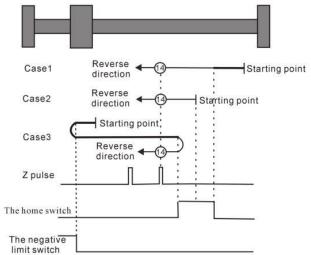


Homing method 12 Homing on the home switch, the negative limit switch and the Z index pulse

Case 1: When the user triggers the execution of the zero return, if the origin switch state is in the low position, the axis starts to move in the reverse direction at the first stage speed. When the origin switch is in the high position, it starts to move at the second stage speed. When the switch is in the low position, the movement direction changes and starts to move at the second speed. When the origin switch is in the high position, the position where the first Z pulse is encountered is the origin position.

Case 2: When the user triggers the execution of the zero return, if the origin switch state is at a high level, the axis will directly move in the reverse direction at the second speed. When the origin switch is at a high position, the position where the first Z pulse is encountered is the origin position.

Case 3: When the user triggers the execution of zero return, if the state of the origin switch is in the low position, the axis starts to move in the reverse direction at the first speed. When the origin switch is in the low position and the reverse operation limit switch is in the high position, the movement direction changes and Start moving at the first speed, when the origin switch is at a high position, start moving at the second speed, and the position where the first Z pulse is encountered is the home position.



Homing method 13 Homing on the home switch, the negative limit switch and the Z index pulse

Case 1: When the user triggers the execution of the zero return, if the origin switch state is at a low level, the axis starts to move in the reverse direction at the first speed. When the origin switch is at a high level, it starts to move at the second speed. When the switch is in the low position, the position where the first Z pulse is encountered is the home position.

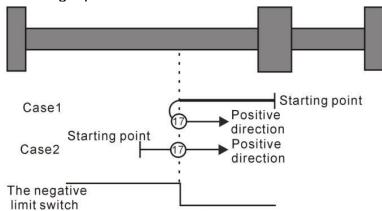
Case 2: When the user triggers the execution of homing, if the origin switch state is at a high position, the axis starts to move in the reverse direction at the second speed. When the origin switch is at a low position, the position where the first Z pulse is encountered is the origin position .

Case 3: When the user triggers the execution of zero return, if the state of the origin switch is in the low position, the axis starts to move in the reverse direction at the first speed. When the origin switch is in the low position and the reverse operation limit switch is in the high position, the movement direction changes and Start to move at the first speed, when the origin switch is at a high position, the direction of movement changes again and starts to move at the second speed, when the home switch is at a low position, the position where the first Z pulse is encountered is the origin position.

Homing method 14 Homing on the home switch, the negative limit switch and the Z index pulse

Homing method 15 ~ Homing method 16 Reserved

• Homing method 15 and Homing method 16 are reserved as the Homing method for future development.

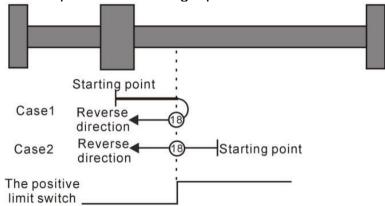

Homing method 17 ~ homing method 30 does not require Z index pulse

Mode 17 to Mode 30 are similar to Mode 1 to Mode 14 mentioned above, except that the positioning of their origin return position no longer requires Z pulses, but only according to the state change of the relevant origin switch and limit switch. Mode 17 is similar to Mode 1, Mode 18 is similar to Mode 2, Mode 19 and Mode 20 are similar to Mode 3, Mode 21 and Mode 22 are similar to Mode 5, Mode 23 and Mode 24 are similar to Mode 7, Mode 25 and Mode 26 are similar to Mode 9 above. Mode 27 and Mode 28 are similar to the previous Mode 11, and Mode 29 and Mode 30 are similar to the previous Mode 13.

Homing method 17: Origin return depending on the reverse operation limit switch

Case 1: When the user triggers the execution of homing, if the negative position limit switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the negative limit switch is in the high level, the moving direction changes and starts to move at the second speed; the position when the negative limit switch state is in the low level is the zero point position.

Case 2: When the user triggers the execution of zero return, if the state of the reverse operation limit switch is at a high position, the axis starts to move forward at the second speed, and the position when the reverse operation limit switch state is at a low position is the origin position.

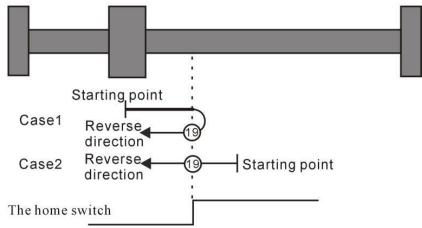


Homing method 17: Homing on the negative limit switch

Homing method 18:Homing on the positive limit switch

Case 1: When the user triggers the execution of homing, if the positive position limit switch state is in the low level, the axis starts to move forward at the first speed, and when the positive position limit switch is in the high level, the moving direction changes and starts to move at second speed, and the position at the time when the positive limit switch state is at the low level is the zero point position.

Case 2: When the user triggers the execution of the zero return, if the forward running limit switch state is at a high position, the axis will directly start reverse movement at the second speed, and the position when the forward running limit switch state is at a low position is the origin position.

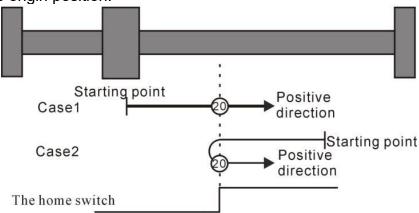

Homing method 18: Homing on the positive limit switch

Homing method 19~ Homing method 20 Depends on the origin return of the origin switch

Homing method 19

Case 1: When the user triggers the execution of the zero return, if the origin switch state is at a low level, the axis starts to move forward at the first speed. When the origin switch is at a high level, the movement direction changes and starts to move at the second speed. The position when the origin switch is in the low position is the origin position.

Case 2: When the user triggers the execution of the zero return, if the origin switch state is in the high position, the axis starts to move in the reverse direction at the second speed, and the position when the origin switch is in the low position is the origin position.

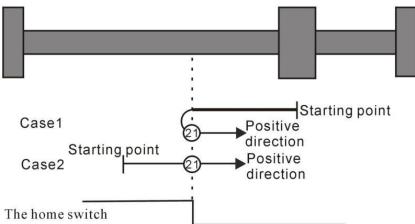

Homing method 19 Homing on the home switch

Homing method 20

Case 1: When the user triggers the execution of the zero return, if the origin switch state is in the low position, the axis starts to move forward at the first speed, and the position when the origin switch is in the high position is the origin position.

Case 2: When the user triggers the execution of the zero return, if the origin switch state is at a high level, the axis starts to move in the reverse direction at the

second speed. When the origin switch is at a low level, the movement direction changes and starts at the first speed. , the position when the origin switch is in high position is the origin position.

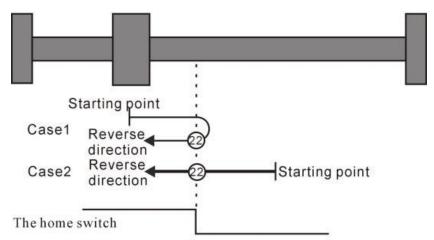


Homing method 20 Homing on the home switch

Homing method 21

Case 1: When the user triggers the execution of the zero return, if the origin switch state is at a low level, the axis starts to move in the reverse direction at the first speed. When the origin switch is at a high level, the movement direction changes and starts to move at the second speed. The position when the origin switch is in the low position is the origin position.

Case 2: When the user triggers the execution of the zero return, if the origin switch state is in the high position, the axis directly starts to move forward at the second speed, and the position when the origin switch is in the low position is the origin position.



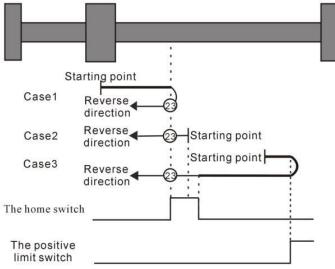
Homing method 21 Homing on the home switch

Homing method 22

Case 1: When the user triggers the execution of zero return, if the origin switch state is at a high level, the axis directly starts to move forward at the second speed. When the origin switch is at a low level, the movement direction changes and starts at the first speed. , the position when the origin switch is in high position is the origin position.

Case 2: When the user triggers the execution of homing, if the state of the origin switch is in the low position, the axis starts to move in the reverse direction at the first speed, and the position when the origin switch is in the high position is the origin position.

Homing method 22 Homing on the home switch

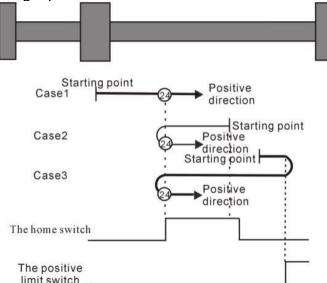

Homing method 23 ~ 26 Origin return depending on origin switch, forward run limit

Homing method 23

Situation 1: When the user triggers the execution of the zero return, if the origin switch state is at a low level, the axis starts to move forward at the first speed. When the origin switch is at a high level, the movement direction changes and starts to move at the second speed. The position when the home switch state is low is the home position.

Scenario 2: When the user triggers the execution of the zero return, if the origin switch state is in the high position, the axis starts to move in the reverse direction at the second speed, and the position when the origin switch state is in the low position is the origin position.

Scenario 3: When the user triggers the execution of zero return, if the state of the origin switch is in the low position, the axis starts to move forward at the first speed. When the origin switch is in the low position and the forward operation limit switch is in the high position, the movement direction changes and Start the movement at the first speed, when the origin switch is in the high position, start the movement at the second speed, and the position when the origin switch is in the low position is the origin position.

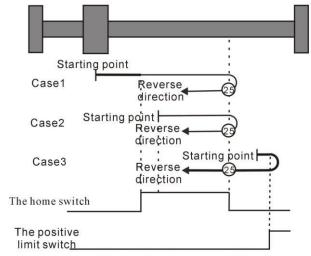

Homing method 23 Homing on the home switch, positive limit switch

Homing method 24

Case 1: When the user triggers the execution of the zero return, if the origin switch state is in the low position, the axis starts to move forward at the first speed, and the position when the origin switch is in the high position is the origin position.

Case 2: When the user triggers the execution of zero return, if the origin switch state is at a high level, the axis directly starts to move in reverse at the second speed. When the origin switch is at a low level, the movement direction changes and starts to move at the second speed. The position when the home switch is in the high position is the home position.

Case 3: When the user triggers the execution of zero return, if the state of the origin switch is in the low position, the axis starts to move forward at the first speed. When the origin switch is in the low position and the forward operation limit switch is in the high position, the movement direction changes and It starts to move at the first speed. When the origin switch is at a high position, it still moves at the first speed. When the home switch is at a low state, the movement direction changes and starts to move at the second speed. When it encounters the home switch The position at the high position is the origin position.

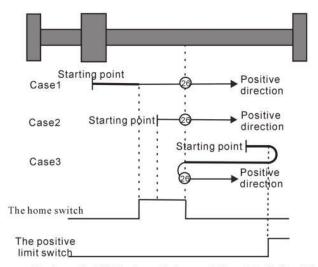

Homing method 24 Homing on the home switch, positive limit switch

Homing method 25

Case 1: When the user triggers the execution of the zero return, if the origin switch state is at a low level, the axis starts to move forward at the first speed. When the origin switch is at a high level, it starts to move at the second speed. When the switch is at the low position, the movement direction changes and starts to move at the second speed. When the home switch is at the high position, the position is the home position.

Case 2: When the user triggers the execution of zero return, if the origin switch state is at a high level, the axis starts to move forward at the second speed. When the origin switch is at a low level, the movement direction changes and starts to move at the second speed. The position when the origin switch is at a high position is the origin position.

Case 3: When the user triggers the execution of zero return, if the state of the origin switch is in the low position, the axis starts to move forward at the first speed. When the origin switch is in the low position and the forward operation limit switch is in the high position, the movement direction changes and Start the movement at the first speed, and the position when the origin switch is at a high position is the origin position.


Homing method 25 Homing on the home switch, positive limit switch

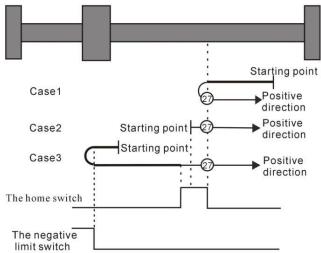
Homing method 26

Case 1: When the user triggers the execution of the zero return, if the origin switch state is at a low level, the axis starts to move forward at the first speed. When the origin switch is at a high level, it starts to move at the second speed. The position when the switch is in the low position is the origin position.

Case 2: When the user triggers the execution of zero return, if the state of the origin switch is in the high position, the axis starts to move forward at the second speed, and the position when the origin switch is in the low position is the origin position.

Case 3: When the user triggers the execution of zero return, if the state of the origin switch is in the low position, the axis starts to move forward at the first speed. When the origin switch is in the low position and the forward operation limit switch is in the high position, the movement direction changes and Start moving at the first speed, when the origin switch is at a high position, the movement direction changes again and starts moving at the second speed, and the position when the home switch is at a low position is the home position.

Homing method 26 Homing on the home switch, positive limit switch

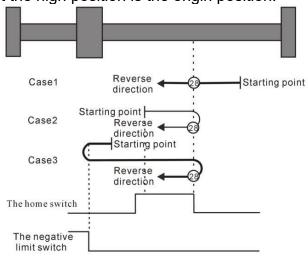

Homing method 27 \sim 30 Origin return depending on origin switch, reverse run limit

Homing method 27

Case 1: When the user triggers the execution of the zero return, if the origin switch state is at a low level, the axis starts to move in the reverse direction at the first speed. When the origin switch is at a high level, the movement direction changes and starts to move at the second speed. The position when the home switch state is low is the home position.

Case 2: When the user triggers the execution of the zero return, if the origin switch state is in the high position, the axis starts to move forward at the second speed, and the position when the origin switch state is in the low position is the origin position.

Case 3: When the user triggers the execution of the zero return, if the origin switch state is in the low position, the axis starts to move in the reverse direction at the first speed. When the origin switch is in the low position and the reverse operation limit switch is in the high position, the movement direction changes and Start to move at the first speed, when the origin switch is at a high position, start to move at the second speed, and the position when the home switch is at a low position is the home position.

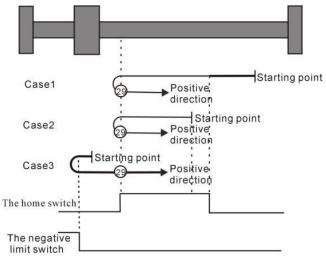

Homing method 27 Homing on the home switch, the negative limit switch

Homing method 28

Case 1: When the user triggers the execution of the zero return, if the origin switch state is in the low position, the axis starts to move in the reverse direction at the first speed, and the position when the origin switch is in the high position is the origin position.

Case 2: When the user triggers the execution of zero return, if the origin switch state is at a high level, the axis directly starts to move forward at the second speed. When the origin switch is at a low level, the movement direction changes and starts to move at the second speed. , the position when the origin switch is in high position is the origin position.

Case 3: When the user triggers the execution of zero return, if the state of the origin switch is in the low position, the axis starts to move in the reverse direction at the first speed. When the origin switch is in the low position and the reverse operation limit switch is in the high position, the movement direction changes and It starts to move at the first speed. When the origin switch is at a high position, it still moves at the first speed. When the home switch is at a low state, the movement direction changes and starts to move at the second speed. When it encounters the home switch The position at the high position is the origin position.

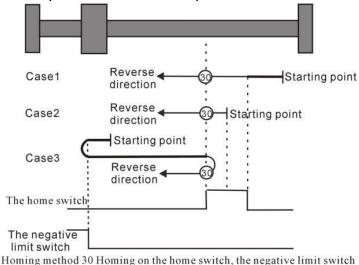

Homing method 28 Homing on the home switch, the negative limit switch

Homing method 29

Case 1: When the user triggers the execution of the zero return, if the origin switch state is in the low position, the axis starts to move in the reverse direction at the first stage speed. When the origin switch is in the high position, it starts to move at the second stage speed. When the switch is at the low position, the movement direction changes and starts to move at the second speed. When the home switch is at the high position, the position is the home position.

Case 2: When the user triggers the execution of the zero return, if the origin switch state is at a high level, the axis will directly move in the reverse direction at the second speed. The position when the origin switch is at a high position is the origin position.

Case 3: When the user triggers the execution of zero return, if the state of the origin switch is in the low position, the axis starts to move in the reverse direction at the first speed. When the origin switch is in the low position and the reverse operation limit switch is in the high position, the movement direction changes and Start the movement at the first speed, and the position when the origin switch is at a high position is the origin position.


Homing method 29 Homing on the home switch, the negative limit switch

Homing method 30

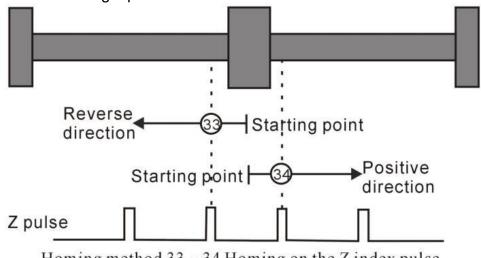
Case 1: When the user triggers the execution of the zero return, if the origin switch state is at a low level, the axis starts to move in the reverse direction at the first speed. When the origin switch is at a high level, it starts to move at the second speed. The position when the home switch is in the low position is the home position.

Case 2: When the user triggers the execution of homing, if the state of the origin switch is in the high position, the axis starts to move in the reverse direction at the second speed. When the origin switch is in the low position, the position is the origin position.

Scenario 3: When the user triggers the execution of the zero return, if the origin switch state is in the low position, the axis starts to move in the reverse direction at the first speed. When the origin switch is in the low position and the reverse operation limit switch is in the high position, the movement direction changes and Start moving at the first speed, when the origin switch is at a high position, the movement direction changes again and starts moving at the second speed, and the position when the home switch is at a low position is the home position.

Homing method 31 and 32 are reserved.

Homing method 31~32 are reserved as homing modes for later development.


Homing method 33~34 Depends on Z pulse

Homing method 33

In mode 33, when the user triggers the execution of homing, the axis starts to move in the reverse direction at the second speed, and the position where the first Z pulse is encountered is the origin position.

Homing method 34

In mode 34, when the user triggers the execution of homing, the axis starts to move forward at the second speed, and the position where the first Z pulse is encountered is the origin position.

Homing method $33 \sim 34$ Homing on the Z index pulse

Homing method 35: depends on current location

In mode 35, when the user triggers the home return, the axis does not move, and the current position of the axis is considered to be the home position.

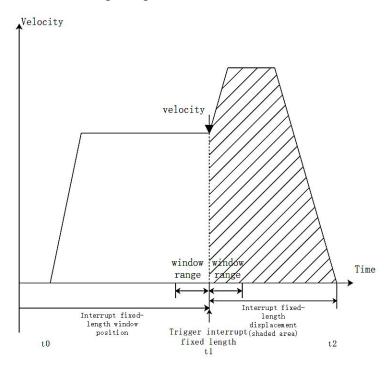
5.2.11 Interrupt fixed length function

The interrupted fixed-length function means that, when the motor is running, after the interrupted fixed-length is triggered, the servo will continue to move the fixed interrupted and fixed-length displacement at the set interrupted fixed-length speed according to the previous movement direction.

The interrupt fixed-length trigger signal can come from the Z point pulse, or from the external IO, depending on the setting of P03.60.

- (□), P03.60=1 enables IO port to trigger interrupt fixed length. There are two cases for IO port to trigger interrupt fixed length. The enable detection of interrupt fixed length signal can come from IO or from the set window.
- 1. Interrupt fixed-length window range P03.67 is not zero, INFn.38 (enable detection interrupted fixed-length trigger signal) is not required to be valid, as long as the interrupted

fixed-length trigger signal INFn.40 is in (interrupted fixed-length window position \pm interrupted If it is valid between the long window range), it will trigger the interrupt fixed length to interrupt the fixed length speed P03.61, and walk the fixed length P03.63; Within the range of long window), even if the interrupted fixed-length trigger signal INFn.40 is valid, the interrupted fixed-length will not be triggered, and the normal cut-to-length is performed. After the interrupt fixed length is completed, the interrupt fixed length completion signal OUTFn.17 is output, and the accumulated value of the interrupt fixed length window position is cleared at the same time, so that the interrupt fixed length window position is counted again, and then the ordinary pulse position command is continued.


- 2. When P03.67 of the interrupted fixed-length window range is equal to zero, it is not necessary to judge the current position of the motor. It is necessary to trigger INFn.38 (enable detection interrupted fixed-length trigger signal) to be valid, and after the interrupted fixed-length trigger signal INFn.40 is valid, it will trigger the interrupt fixed length to interrupt the fixed length speed P03.61, and go to the interrupt fixed length P03.63. If you need to retrigger the next interrupt fixed length, you need to reset INFn.38, INFn.38 is valid, and After INFn.40 is valid again, go to the fixed length position.
- (三)、P03.60=2 enables the Z point trigger to interrupt the fixed length. There are two cases for the Z point trigger to interrupt the fixed length. The enable detection of the interrupted fixed length signal can come from IO or from the set window.
- 1. The interrupted fixed-length window range P03.67 is not zero, and INFn.38 (enable detection interrupted fixed-length trigger signal) is not required to be valid, as long as the Z point signal is within (interrupted fixed-length window position \pm interrupted fixed-length window range) appears, it will trigger the interruption of the fixed length, to interrupt the fixed length of speed P03.61, and walk the fixed length of P03.63; if the position that has been traveled is not within the set (interrupted fixed length window position \pm interrupted fixed length window range) range Within, even if the Z point signal appears, it will not trigger the interrupted fixed length and go to the normal cut length. After the interrupt fixed length is completed, the interrupt fixed length completion signal OUTFn.17 is output, and the accumulated value of the interrupt fixed length window position is cleared at the same time, so that the interrupt fixed length window position is counted again, and then the ordinary pulse position command is continued.
- 2. When P03.67 of the interrupted fixed-length window range is equal to zero, it is not necessary to judge the current position of the motor. Triggering INFn.38 (enable detection interrupted fixed-length trigger signal) is valid. After the Z point signal appears, the interrupted determination will be triggered. long, to interrupt the fixed length speed P03.61, and walk the interrupted fixed length P03.63. If you need to re-trigger the next interrupted fixed length, you need to reset INFn.38, and re-trigger INFn.38 to be effective. After the Z point signal appears, Go to the fixed-length position.

Example to Bit description the interrupt fixed length process:

If the interrupted fixed-length trigger signal appears between (the interrupted fixed-length window position \pm the interrupted fixed-length window range), the position of the interrupted fixed-length planning is executed. As shown in the figure below, at the beginning, the drive is enabled and the accumulated value of the interrupt fixed-length window position

is cleared at the same time. Start from t0, execute the ordinary position command, trigger the interrupt fixed-length signal at t1, start to execute the position of the interrupted fixed-length planning, interrupt the fixed-length completion at t2, output the interrupted fixed-length completion signal, and clear the cumulative value of the interrupted fixed-length window position, and then continue to follow the normal pulse position command.

If the interrupt fixed-length trigger signal is not between (the interrupted fixed-length window position \pm the interrupted fixed-length window range), the interrupted fixed-length trigger is disabled, and the normal pulse position command is continued.

Notice:

In the process of interrupting the fixed length, the servo shields all external position commands, and will not continue to execute the external position commands until the interrupted fixed length function is released.

If the position command comes from the multi-segment position inside the servo, after the interruption of the fixed length is released, the multi-segment position needs to be triggered again before the position command can be continued.

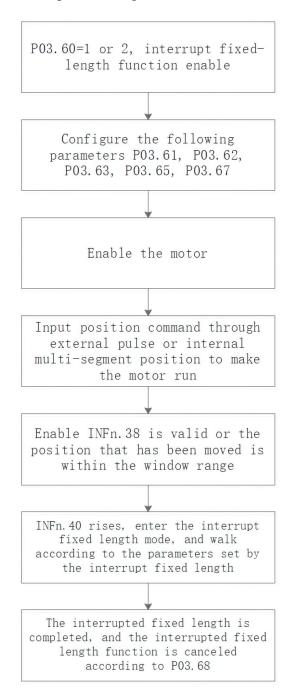
When the interrupt fixed length speed is set to 0, keep the current motor running speed and run the command set by the interrupt fixed length.

Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P03.60	Interrupt fixed-length function enable 0- Disable interrupt fixed-length function 1- Enable IO trigger interrupt fixed-length function 2- Enable Z point trigger interrupt fixed length	0~2	-	Set whether to use the interrupt fixed length function, and the way to enable the interrupt fixed length.	Stop to setting	Immediate ly	0	RW
P03.61	Interrupt fixed length speed	0~32767	rpm	Set the maximum speed that the motor can reach when the fixed-length operation is interrupted.	anytime	Immediate ly	3000	RW

P03.62	Interrupt fixed long	0~32767	ms	Set the speed	anytime	Immediate	500	RW
	acceleration/deceler			change time	·	ly		
	ation time			when the		·		
				motor speed				
				is uniformly				
				changed				
				from 0 to the				
				rated speed				
				when the				
				fixed-length				
				operation is				
				interrupted,				
				or the time to				
				decelerate				
				from the				
				rated speed				
				to 0.				
				Therefore,				
				when the				
				fixed-length				
				operation is				
				interrupted,				
				the actual				
				acceleration				
				and				
				deceleration				
				time of the				
				motor t: t =				
				P03.61-moto				
				r speed				
				before the				
				fixed-length				
				operation is				
				interrupted /				
				Rated speed				
				× (P03.62)				
P03.63	Interrupt fixed	0~	User	Set the	anytime	Immediate	10000	RW
	length	21474836	units	command		ly		
		47		value of the				
				position				
				when the				
				fixed-length				
				operation is				

				interrupted.				
P03.65	Interrupt	0~214748	User	Sets the	anytime	Immediate	0	RW
	fixed-length window	3647	units	window		ly		
	position			position				
				where the				
				fixed-length				
				enable is				
				valid.				
P03.67	Interrupt	0~32767	User	Sets the	anytime	Immediate	0	RW
	fixed-length window		units	window		ly		
	range			range for				
				interrupted				
				long-running				
				. When the				
				interrupt				
				fixed-length				
				window				
				range is set				
				to 0, the				
				window				
				setting is				
				invalid.				
P03.68	Cancel interruption	0~1	-	Set the	anytime	Immediate	0	RW
	fixed-length mode			method to		ly		
	0- After the interrupt			release the				
	fixed length is			fixed-length				
	completed, directly			lock signal.				
	cancel the interrupt							
	fixed length							
	1- Release interrupt							
	fixed length through IO							


The associated input function bits are as follows.

Function bits	Bit description
INFn.38	Enable detection interrupt fixed-length trigger signal INFn.40
INFn.39	Release interrupt fixed-length signal
INFn.40	Interrupt fixed-length trigger signal

The associated output function bits are as follows.

Function	Bit description
bits	
OUTFn.17	Interrupt fixed-length completion output. When the position error of the interrupt fixed length is less than the positioning completion threshold P03.46, and the positioning completion\approaching time threshold P03.49 is maintained, and the speed reference P09.89 in the position loop mode is output under the condition of=0.

The setting procedure of the interrupt fixed length function is as follows.

5.2.12 4th power position curve function

Generally speaking, a trapezoidal velocity curve is used for position planning inside the servo. The trapezoidal speed curve has a certain impact on the machine. In order to reduce the impact of the trapezoidal speed curve on the machine, the 4th power position curve function can be enabled. After enabling, the position curve is planned with a 4th power curve, which can greatly reduce the impact on the mechanical system.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P03.82	Enable 4th power	0~1	-	Set the	Stop to	Immediate	1	RW
	curve planning			method of	setting	ly		
	0- Use a trapezoidal			position				
	velocity profile			curve				
	1- Using a 4th power			planning. It				
	curve			can only be				
				modified if				
				the servo is				
				not enabled.				

5.2.13 Full closed loop function

In actual field applications, such as steel plate feeding, due to the sliding between the steel plate and the motor, the displacement of the motor and the displacement of the actual material are inconsistent. Therefore, an external second encoder is required to measure the displacement of the actual material. Servo The driver controls the motor speed according to the given position command and the position signal fed back by the second encoder. That is, closed-loop control is performed on the position of the second encoder, so that the given position command is consistent with the position fed back by the second encoder.

Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P03.31	Enable full closed	0~1	-	Set whether	Stop to	Immediate	0	RW
	loop			to enable the	setting	ly		
	0- Disable fully closed			full closed				
	loop			loop				
	1- Enable full-closed							
	loop (P03.78 setting is							
	invalid, servo pulse port							
	(CN3's 37, 38, 39,							
	40 pins) is used as the							
	second encoder							
	input)							

P03.32	Full closed loop	0~2		When full	anytime	Immediate	0	RW
1 05.52	mode	0~2	-		anythic		U	IXVV
	0- semi-closed loop;			closed loop is enabled,		ly		
				set full				
	using electronic gear							
	ratio 1			closed loop				
	1- full closed loop;			mode.				
	using electronic gear							
	ratio 1							
	2- Switch full-closed							
	and semi-closed							
	according to IO; IO is							
	invalid, servo runs in							
	semi-closed loop,							
	adopts electronic gear							
	ratio 1; IO is valid,							
	servo runs in full closed							
	loop, adopts electronic							
	gear ratio 2							
	Full closed loop							
	feedback polarity							
P03.33	Full closed loop	0~1	_	When the	anytime	Immediate	0	RW
103.33		0~1	-	full-closed	anythic	ly	U	IXVV
	feedback polarity 0- The values of the					ly .		
				loop function				
	motor encoder counter			is set, the				
	and the second encoder			internal and				
	counter are incremented			external				
	or decremented			encoders				
	simultaneously			feedback the				
	1- The value of the			pulse				
	motor encoder counter			counting				
	and the second encoder			direction				
	counter are			during the				
	incremented, one			motor				
	decremented			rotation.				
P03.34	The number of	0~214748	-	Set the	anytime	Immediate	10000	RW
	pulses of the second	3647		number of		ly		
	encoder			feedback				
	corresponding to			pulses of the				
	one revolution of the			second				
	motor			encoder				
				when the				
P03.34	counter are incremented, one decremented The number of pulses of the second encoder corresponding to one revolution of the		-	during the motor rotation. Set the number of feedback pulses of the second encoder	anytime		10000	RW

				servo motor rotates one revolution.				
P03.36	Full closed loop	0~214748	0.000	Set the	anytime	Immediate	10000	RW
	position error	3647	1	threshold		ly		
	excessive		round	value of the				
	threshold, unit is			absolute				
	0.0001 round			value of the				
				position				
				deviation				
				when the				
				full-closed				
				loop position				
				deviation is				
				too large				
				fault.				

P03.38	Fully closed loop -	0.000	The fully	-	-	-	RO
	position error,	1	closed loop				
	0.0001 round	round	position				
			error refers				
			to (the count				
			value of the				
			motor				
			encoder - the				
			count value				
			of the second				
			encoder				
			reduced to				
			the motor				
			encoder),				
			and the				
			position				
			error				
			represents				
			the relative				
			sliding				
			displacement				
			between the				
			material and				
			the motor.				

P03.40	Full closed loop	0~32767	-	This value is	anytime	Immediate	0	RW
	position error			valid when		ly		
	clearing cycles			in full closed				
				loop state.				
				When set to				
				0, the				
				full-closed				
				loop position				
				error will not				
				be cleared.				
				When set to				
				n, when the				
				motor rotates				
				every n				
				cycles, if the				
				full-closed				
				loop position				
				error is less				
				than P03.36,				
				the				
				full-closed				
				loop position				
				error will be				
				cleared.				
P03.41	Motor encoder	-	clk/5	Count and	-	-	-	RO
	rate in full closed		ms	display the				
	loop mode			speed of the				
				motor				
				encoder				
				under full				
				closed-loop				
				control. The				
				number of				
				pulses per				
D02.42	C 1 1		11 /5	5ms.				n.o.
P03.42	Second encoder	-	clk/5	Statistics and	-	-	-	RO
	rate in full closed		ms	display of the second				
	loop mode			encoder rate				
				under full				
				closed-loop control. The				
				number of				

				pulses per 5ms.				
P00.32	Second encoder software filter time constant	0~32767	ms	Set the second encoder software filter time constant.	anytime	Immediate ly	5	RW

Fn013 Self-learning feedback polarity and the number of second encoder pulses in one revolution of the motor in Fn013 full-closed loop mode

In full-closed loop mode, it is necessary to set the full-closed loop feedback polarity P03.33 and P03.34. The appropriate value can be automatically calculated through this function operation. When performing this function operation, please ensure that the second encoder measuring wheel can be tightly and The material connection ensures that no slippage occurs between the measuring wheel and the material.

The operation steps are as follows:

- ① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;
- ② Combine the " \blacktriangle " (increase), " \blacktriangleleft " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn013;
 - 3 Click SET to display LFCP. (Learn Full Close Parameter);
- ④ Press the "◀ ■" (shift) key; the motor will rotate forward 3 times at a speed of 10rpm.

The relevant input function bits are as follows.

Function bits	Bit description
INFn.45	Switch between fully closed loop and semi closed loop
	When invalid, the servo is in semi-closed loop mode, using electronic gear ratio 1; when valid,
	servo is in full-closed loop mode, using electronic gear ratio 2

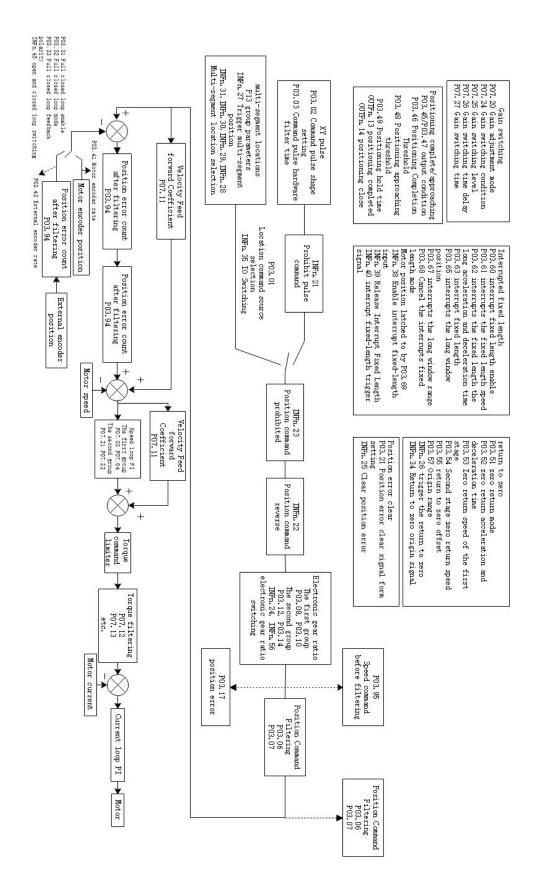
5.2.14 Torque limit function

Position mode torque limit and torque mode torque limit are the same. Refer to (5.4.2 Torque Limit).

5.2.15 Travel limit function

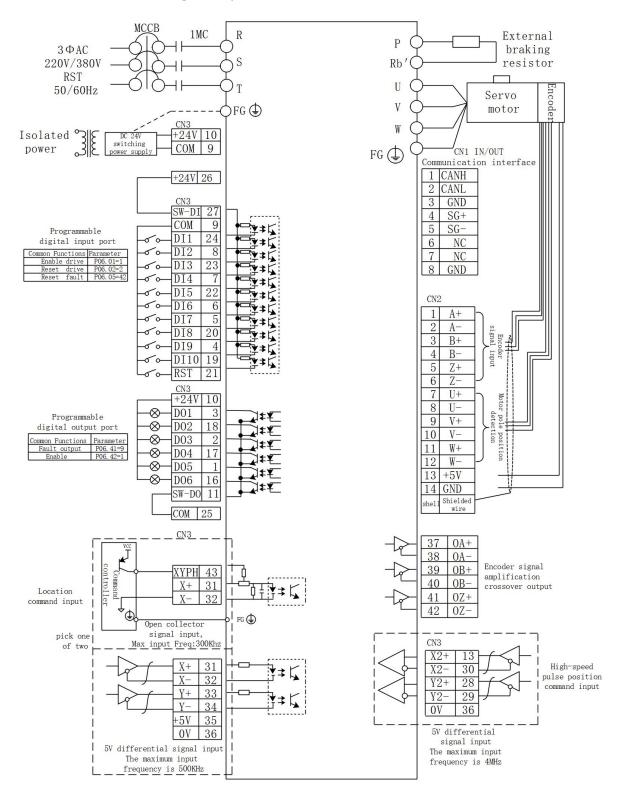
Both the speed mode and the position mode have software and hardware limit functions. When the software limit is enabled, the encoder position value is detected to be less than the lower limit value of the software limit (P03.74) and the motor moves in the negative direction,

and the software limit is reported. Bit fault (Er207). It is detected that the position value of the encoder is greater than the upper limit value of the software limit (P03.76), and the motor moves in the positive direction, and a software limit fault (Er207) is reported. If only the software limit needs to be turned off and only the hardware limit is used, the upper and lower limits of the software limit can be set to 0.


the servo also has hardware limit function. When the hardware limit is enabled, by setting INFn.43 and INFn.44 to a DIx, when the DIx is valid, and the speed is greater than/less than zero (refer to the description of the bits INFn.43 and INFn.44 below), the hardware will be reported to the hardware. Limit fault Er208.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P03.73	Enable hardware	0~2	-	Set whether	anytime	Immediate	0	RW
	and software limits			to use the		ly		
	0- Disable hardware and			hardware				
	software limits			and software				
	1- Directly enable			limit				
	software and hardware			function, and				
	limit after power-on			the way to				
	2- Enable software and			enable the				
	hardware limit after			software and				
	returning to zero			hardware				
				limit.				
P03.74	Software limit lower	-214748364	User	Set the lower	anytime	Immediate	-100000	RW
	limit value	7 ~	units	limit value		ly	00	
		2147483647		of the				
				software				
				limit				
P03.76	Software limit upper	-214748364	User	Set the upper	anytime	Immediate	1000000	RW
	limit value	7 ~	units	limit value		ly	0	
		2147483647		of software				
				limit				

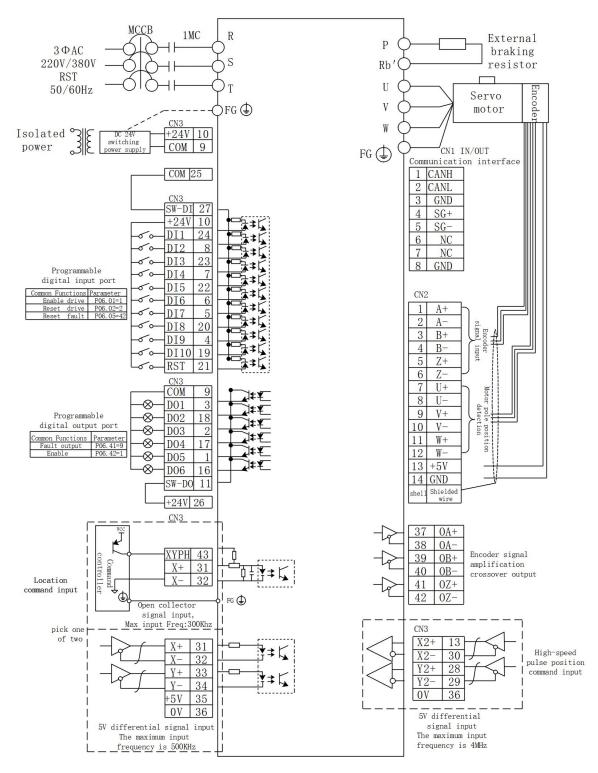
The relevant input function bits are as follows.


The felevant input function of the are as follows.								
Function bits	Bit description							
INFn.43	Forward hardware limit switch, when the speed is greater than zero and INFn.43 is valid, it							
	will report hardware limit fault							
INFn.44	Reverse hardware limit switch, when the speed is less than zero and INFn.44 is valid, the							
	hardware limit fault is reported							

5.2.16 Internal implementation block diagram of position mode

5.2.17 Typical Wiring Diagram for Position Mode

5.2.17.1 NPN wiring for DI/DO

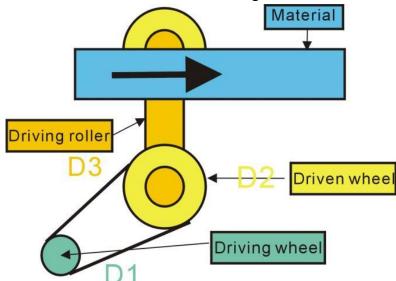


MCCB: air switch 1MC: AC contactor

1. Indicates twisted pair shielded wire.

- 2.The DC24V power supply is prepared by the user. The DC24V switching power supply should be powered by an isolation transformer, and its ground terminal should be directly connected to the ground terminal of the driver.
- 3.For the wiring of position command input, please refer to the detailed description in "3.4.3 Wiring Example of Position Command Input".
- 4. The position command mode is the default working mode of the drive, and the parameters in the figure have been set before leaving the factory.

5.2.17.2 PNP wiring for DI/DO


MCCB: air switch 1MC: AC contactor

- 1. Indicates twisted pair shielded wire.
- 2.The DC24V power supply is prepared by the user. The DC24V switching power supply should be powered by an isolation transformer, and its ground terminal should be directly connected to the ground terminal of the driver.

- 3.For the wiring of position command input, please refer to the detailed description in "3.4.3 Wiring Example of Position Command Input".
- 4. The position command mode is the default working mode of the drive, and the parameters in the figure have been set before leaving the factory.

5.2.18 Example of position mode XY pulse (pulse + direction) moving position

The PLC sends pulses (pulse + direction) to move the position mode, which is the most commonly used servo position control mode. Its applications are very rich, and the transmission material is one of them, as shown in the figure below.

The servo motor rotates the driving wheel (diameter D1), and drives the driven wheel (diameter D2) to rotate through the belt. The transmission roller (diameter D3) and the driven wheel rotate coaxially, and at the same time drive the material to the right.

In order for the material to move accurately for a distance (displacement L), the electronic gear ratio must be set first and then the XY pulses (number N) must be sent. Assuming that the number of lines of the encoder is 2500 and the AB pulse is 4 times, the motor encoder resolution (P00.11) = 2500 * 4 = 10000. Send N XY pulses, requiring the material to be displaced by L

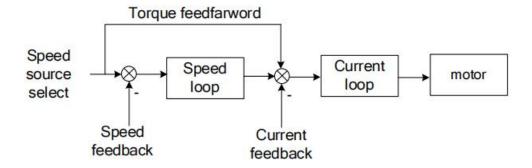
$$L = \frac{N * \text{electronic gear ratio}}{2500 * 4} * \frac{D1}{D2} * \pi * D3 \quad \text{(m)}$$

Then the electronic gear ratio is set to

$$\frac{\text{Electronic gear ratio 1 numerator}(P03.08)}{\text{Electronic gear ratio 1 denominator}(P03.10)} = \frac{2500*4}{N} * \frac{D2}{D1} * \frac{L}{\pi*D3}$$

For example: send 100 XY pulses, the material displacement is required to be 0.01m, D1=0.05m, D2=0.10m, D3=0.08m, then

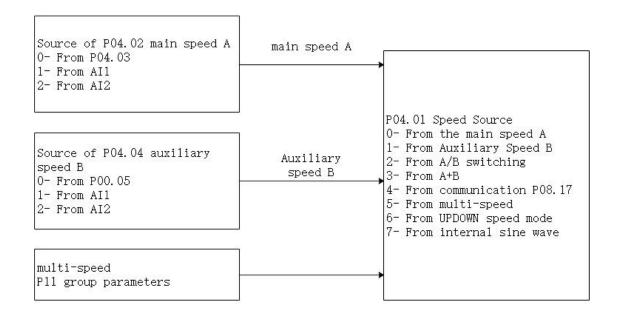
Electronic gear ratio=


$$\frac{2500*4}{100}*\frac{0.10}{0.05}*\frac{0.01}{\pi*0.08}=7.958=\frac{\text{Electronic gear ratio 1 numerator}(P03.08)}{\text{Electronic gear ratio 1 denominator}(P03.10)}=\frac{7958}{1000}$$

The specific parameters are set as follows:

P02.01=0;	work in position mode
P03.01=0;	position command is from external pulse
P03.02=0;	pulse command pattern is pulse + direction
P03.08=7958	Set the electronic gear ratio Numerator
P03.10=1000	Set electronic gear ratio denominator
P06.01=1	Enable servo when terminal DI1 is valid
P06.02=42	Reset the driver when terminal DI2 is valid
P06.41=9	Servo driver failure when terminal DO1 is active
P06.42=13	Servo motor positioning completed when terminal DO2 is valid

5.3 speed mode


The speed mode is a control mode with the motor speed as the control target, which is often used for the main shaft dragging. The implementation of the speed mode is shown in the figure below.

5.3.1 Speed command source

The servo has two speeds to choose from, namely the main speed A and the auxiliary speed B. These two speeds can be superimposed on each other or can be switched to each other. Both the main speed A and the auxiliary speed B have multiple speed sources. As shown below

Note: Since AI3 is not supported on the VC310CANopen bus servo hardware, the speed cannot be sourced from AI3, and the same is true for others

Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P04.01	Speed command	0~7	-	Select the	anytime	Immediatel	0	RW
	source			source of the		у		
	0- main speed A 1-			speed				
	auxiliary speed B 2-			command.				
	INFn.12 switch A/B							
	3- A+B							
	4- P08.17							
	5- mulit speed							
	6-UP/DOWN speed							
	mode							
	7- sin wave							
P04.02	main speed A	0~4	-	Set the speed	anytime	Immediatel	0	RW
	source			command		У		
	0- from P04.03			source of the				
	1- from AI1			main speed				
	2- from AI2 3-from AI3			command A				
				source.				
	(The hardware does not support)							
	4-from pulse							
	frequency							
P04.03	Set value of main	-32767~32	rpm	When the	anytime	Immediatel	500	RW

	speed A	767		main speed A		у		
	Speed 1	707		source		,		
				selects the				
				digital given				
				source, set				
				the speed				
				command				
				value				
				through				
				P04.03.				
P04.04	auxiliary speed B	0~4	_	Set the speed	anytime	Immediatel	0	RW
101.01	source			command		у		1011
	0- from P04.05			source of		,		
	1- from AI1			auxiliary				
	2- from AI2			speed				
	3- from AI3			command B.				
	(The hardware does			Communa B.				
	not support)							
	4-from pulse							
	frequency							
P04.05	Auxiliary speed B	-32767~32	rpm	When the	anytime	Immediatel	500	RW
10.000	set value	767	-17	source of	,	у		12
	500 1 41100	, , ,		auxiliary		,		
				speed B				
				selects the				
				digital given				
				source, set				
				the speed				
				command				
				value				
				through				
				P04.05.				
P08.17	Speed	-32767~32	rpm	In the speed	anytime	Immediatel	0	RW
	communication	767		control		у		
	given			mode, when				
	_			the speed				
				command				
				source is				
				communicati				
				on given, set				
				the speed				
				command				
				value.				

Function bits	Bit description
INFn.12	Switch the main speed A and the auxiliary speed B, and use the auxiliary speed B when it is
	active.

When the speed command comes from AIx, please refer to "6.3.1 Analog Input AI" for details.

5.3.2 Multi-stage speed mode

Servo supports multi-segment velocity mode. There are 3 modes of multi-stage speed, namely single-run stop, cyclic operation, and IO switching operation.

Single-run stop means that after the motor is enabled, the first stage of speed will be run, and after the operation is completed, the next stage of speed will be run until the running stage number is equal to the total number of stages, and then the machine will stop.

For example, the total number of segments is set to 2, and the single-run stop mode is used. After the motor is enabled, the motor will first run the first stage of speed, and then run the second stage of speed after running, and stop after running.

Cyclic operation is to run the first stage of speed again when a single operation is about to stop, so that the cycle does not stop.

For example, the total number of segments is set to 3, and the cycle operation mode is used. After the motor is enabled, the motor first runs the first stage of speed, then the second stage of speed, then the third stage of speed, and then the first stage of speed, and so on.

IO switching operation means that after the motor is enabled, the driver reads the value of IO to get the segment number, and then runs the speed of the segment. After the IO changes, the driver re-reads the value of IO, gets the segment number again, and then runs the segment speed.

Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write metho d
P11.01	Multi-speed mode	0~2	-	In speed	Stop to	Immediately	0	RW
	0- single-run stop			control,	setting			
	1-cycle run			when the				
	2- IO switch run			speed				
				command				
				source is				
				multi-speed,				
				set the				
				multi-speed				

				command				
				operation				
				mode.				
P11.02	The total number of	1~16	-	Set the total	anytime	Immediately	16	RW
	segments of the			number of				
	speed			segments of				
				the speed				
				command.				
				Different				
				speeds and				
				running				
				times can be				
				set for				
				different				
				segments,				
				and there are				
				4 sets of				
				acceleration				
				times for				
				selection.				
P11.03	Running time unit	0~1	_	Multi-speed	anytime	Immediately	1	RW
111.05	0- ms	0 1		running time	unythine	Immodiately	1	10,1
	1- s			unit				
				selection.				
P11.04	Acceleration time 1	0~32767	ms	For each	anytime	Immediately	500	RW
111.01	7 receivation time 1	0 32707	1113	multi-speed	unythic	immediatery	300	1000
				command, 4				
				sets of				
				acceleration				
				and				
				deceleration				
				time are				
				provided for				
	Deceler de de			selection.				
P11.05	Deceleration time 1	0~32767	ms	-	anytime	Immediately	500	RW
P11.06	Acceleration time 2	0~32767	ms	-	anytime	Immediately	500	RW
P11.07	Deceleration time 2	0~32767	ms	-	anytime	Immediately	500	RW
P11.08	Acceleration time 3	0~32767	ms	-	anytime	Immediately	500	RW
P11.09	Deceleration time 3	0~32767	 		anytime	Immediately	500	RW

P11.10	Acceleration time 4	0~32767	ms	-	anytime	Immediately	500	RW
P11.11	Deceleration time 4	0~32767	ms	-	anytime	Immediately	500	RW
P11.12	1st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RW
	command size	767		value of the				
				speed				
				command of				
				the 1th stage.				
P11.13	1st speed command	0~32767	ms(s)	The running	anytime	Immediately	10	RW
	run time This			time set by				
	parameter unit is set			the speed				
	by P11.03.			command of				
				the 1th stage.				
P11.14	The 1th speed	0~4	-	Acceleration/	anytime	Immediately	0	RW
	acceleration and			deceleration				
	deceleration time			time selected				
	selection 0-Use			by the 1th				
	acceleration/deceler			speed				
	ation time			command				
	P04.17 P04.18							
	1- Using							
	acceleration/							
	deceleration time 1							
	2- Using							
	acceleration/							
	deceleration time 2							
	3- Using							
	acceleration/deceler							
	ation time 3							
	4- Using							
	acceleration/							
	deceleration time 4							
P11.15	2st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RV
	command size	767		value of the				
				1th speed				
				command.				
P11.16	2st speed command	0~32767	ms(s)	-	anytime	Immediately	10	RW
	run time							
P11.17	The 2th speed	0~4	-	Select the	anytime	Immediately	0	RV
	acceleration and			acceleration/				
	deceleration time			deceleration				

						1		
	selection 0-Use			time of the				
	acceleration/deceler			2th speed				
	ation time			command				
	P04.17 P04.18							
	1- Using							
	acceleration/							
	deceleration time 1							
	2- Using							
	acceleration/							
	deceleration time 2							
	3- Using							
	acceleration/deceler							
	ation time 3							
	4- Using							
	acceleration/							
	deceleration time 4							
P11.18	3st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RW
	command size	767		value of the				
				3th speed				
				command.				
P11.19	3st speed command	0~32767	ms(s)	-	anytime	Immediately	10	RW
	run time							
P11.20	The 3th speed	0~4	-	Select the	anytime	Immediately	0	RW
	acceleration and			acceleration/				
	deceleration time			deceleration				
	selection 0-Use			time of the				
	acceleration/deceler			3th speed				
	ation time			command				
	P04.17 P04.18							
	1- Using							
	acceleration/							
	deceleration time 1							
	2- Using							
	acceleration/							
	deceleration time 2							
	3- Using							
	acceleration/deceler							
	ation time 3							
	4- Using							
	acceleration/							
	deceleration time 4							

P11.21	4st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RW
	command size	767	1	value of the				
				4th speed				
				command.				
P11.22	4st speed command	0~32767	ms(s)	-	anytime	Immediately	10	RW
	run time							
P11.23	The 4th speed	0~4	-	Select the	anytime	Immediately	0	RW
	acceleration and			acceleration/				
	deceleration time			deceleration				
	selection 0-Use			time of the				
	acceleration/deceler			4th speed				
	ation time			command				
	P04.17 P04.18							
	1- Using							
	acceleration/							
	deceleration time 1							
	2- Using							
	acceleration/							
	deceleration time 2							
	3- Using							
	acceleration/deceler							
	ation time 3							
	4- Using							
	acceleration/							
	deceleration time 4							
P11.24	5st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RW
	command size	767		value of the				
				5th segment				
				speed				
				command.				
P11.25	5st speed command	0~32767	ms(s)	-	anytime	Immediately	10	RW
	run time							
P11.26	The 5th speed	0~4	-	Select the	anytime	Immediately	0	RW
	acceleration and			acceleration/				
	deceleration time			deceleration				
	selection 0-Use			time of the				
	acceleration/deceler			5th speed				
	ation time			command				
	P04.17 P04.18							
	1- Using							
	acceleration/							
	deceleration time 1							
	2- Using							

	1							
	acceleration/							
	deceleration time 2							
	3- Using							
	acceleration/deceler							
	ation time 3							
	4- Using							
	acceleration/							
	deceleration time 4							
P11.27	6st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RW
	command size	767	1	value of the				
				6th speed				
				command.				
P11.28	6st speed command	0~32767	ms(s)	_	anytime	Immediately	10	RW
111.20	run time	0 02/0/			,		10	1
P11.29	The 6th speed	0~4	_	Select the	anytime	Immediately	0	RW
111.29	acceleration and			acceleration/	,		v	1
	deceleration time			deceleration				
	selection 0-Use			time of the				
	acceleration/deceler			6th speed				
	ation time			command				
	P04.17 P04.18			Communa				
	1- Using							
	acceleration/							
	deceleration time 1							
	2- Using							
	acceleration/							
	deceleration time 2							
	3- Using							
	acceleration/deceler							
	ation time 3							
	4- Using							
	acceleration/							
D11 20	deceleration time 4	227(7.22		Cat the 1		Image a 31 - 4 - 1.	0	DII
P11.30	7st stage speed	-32767~32	rpm	Set the speed value of the	anytime	Immediately	0	RW
	command size	767						
				7th speed				
D11.21		0.22555		command.			10	
P11.31	7st speed command	0~32767	ms(s)	-	anytime	Immediately	10	RW
	run time						_	_
P11.32	The 7th speed	0~4	-	Select the	anytime	Immediately	0	RW
	acceleration and			acceleration/				
	deceleration time			deceleration				
	selection 0-Use			time of the				

	acceleration/deceler			7th am s = 1				
	ation time			7th speed				
				command				
	P04.17 P04.18							
	1- Using							
	acceleration/							
	deceleration time 1							
	2- Using							
	acceleration/							
	deceleration time 2							
	3- Using							
	acceleration/deceler							
	ation time 3							
	4- Using							
	acceleration/							
	deceleration time 4							
P11.33	8st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RW
	command size	767		value of the				
				8th speed				
				command.				
P11.34	8st speed command	0~32767	ms(s)	-	anytime	Immediately	10	RW
	run time							
P11.35	The 8th speed	0~4	-	Select the	anytime	Immediately	0	RW
	acceleration and			acceleration/				
	deceleration time			deceleration				
	selection 0-Use			time of the				
	acceleration/deceler			8th speed				
	ation time			command				
	P04.17 P04.18							
	1- Using							
	acceleration/							
	deceleration time 1							
	2- Using							
	acceleration/							
	deceleration time 2							
	3- Using							
	acceleration/deceler							
	ation time 3							
	4- Using							
	acceleration/							
	deceleration time 4							
P11.36	9st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RW
111.50	command size	767	15.11	value of the		Immodiatory		10,11
	Communa SIZC	707		9th speed				
				7tii speed				

				command.				
P11.37	9st speed command run time	0~32767	ms(s)	-	anytime	Immediately	10	RW
P11.38	The 9th speed acceleration and deceleration time selection 0-Use acceleration/deceler ation time P04.17 P04.18 1- Using acceleration/ deceleration time 1 2- Using acceleration/ deceleration time 2 3- Using acceleration/deceler ation time 3 4- Using acceleration/ deceleration time 4	0~4	-	Select the acceleration/ deceleration time of the 9th speed command	anytime	Immediately	0	RW
P11.39	10st stage speed command size	-32767~32 767	rpm	Set the speed value of the 10th speed command.	anytime	Immediately	0	RW
P11.40	10st speed command run time	0~32767	ms(s)	-	anytime	Immediately	10	RW
P11.41	The 10th speed acceleration and deceleration time selection 0-Use acceleration/deceler ation time P04.17 P04.18 1- Using acceleration/ deceleration time 1 2- Using acceleration/ deceleration/ deceleration time 2 3- Using acceleration/deceler	0~4	-	Select the acceleration/ deceleration time of the 10th speed command	anytime	Immediately	0	RW

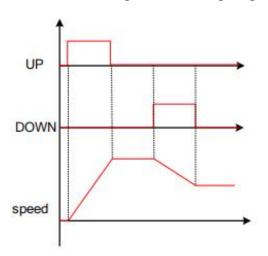
	ation time 3							
	4- Using							
	acceleration/							
	deceleration time 4							
P11.42	11st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RW
	command size	767	1	value of the				
				11th speed				
				command.				
P11.43	11st speed command run time	0~32767	ms(s)	-	anytime	Immediately	10	RW
P11.44	The 11th speed	0~4	-	Select the	anytime	Immediately	0	RV
	acceleration and			acceleration/	-			
	deceleration time			deceleration				
	selection 0-Use			time of the				
	acceleration/deceler			11th speed				
	ation time			command				
	P04.17 P04.18							
	1- Using							
	acceleration/							
	deceleration time 1							
	2- Using							
	acceleration/							
	deceleration time 2							
	3- Using							
	acceleration/deceler							
	ation time 3							
	4- Using							
	acceleration/							
	deceleration time 4							
P11.45	12st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RV
111.10	command size	767	Pin	value of the			Ü	10,
		707		12th speed				
				command.				
P11.46	12st speed command	0~32767	ms(s)	-	anytime	Immediately	10	RV
111.10	run time	0 32707	III5(5)				10	
P11.47	The 12th speed	0~4	_	Select the	anytime	Immediately	0	RV
111.17	acceleration and			acceleration/			V	10,
	deceleration time			deceleration				
	selection 0-Use			time of the				
	acceleration/deceler			12th speed				
	ation time			command				
	P04.17 P04.18			Command				
	1- Using				1			

	acceleration/							
	deceleration time 1							
	2- Using							
	acceleration/							
	deceleration time 2							
	3- Using							
	acceleration/deceler							
	ation time 3							
	4- Using							
	acceleration/							
	deceleration time							
P11.48	13st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RW
	command size	767		value of the				
				13th speed				
				command.				
P11.49	13st speed command	0~32767	ms(s)	-	anytime	Immediately	10	RW
	run time							
P11.50	The 13th speed	0~4	-	Select the	anytime	Immediately	0	RW
	acceleration and			acceleration/				
	deceleration time			deceleration				
	selection 0-Use			time of the				
	acceleration/deceler			13th speed				
	ation time			command				
	P04.17 P04.18							
	1- Using							
	acceleration/							
	deceleration time 1							
	2- Using							
	acceleration/							
	deceleration time 2							
	3- Using							
	acceleration/deceler							
	ation time 3							
	4- Using							
	acceleration/							
	deceleration time 4							
P11.51	14st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RW
	command size	767		value of the				
				14th speed				
				command.				
P11.52	14st speed command	0~32767	ms(s)	-	anytime	Immediately	10	RW
	run time							
P11.53	The 14th speed	0~4	-	Select the	anytime	Immediately	0	RW
		1	1	1	· ·			

RW
RW
RW

P11.57	16st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RW
	command size	767		value of the				
				16th speed				
				command.				
P11.58	16st speed command	0~32767	ms(s)	-	anytime	Immediately	10	RW
	run time							
P11.59	The 16th speed	0~4	-	Select the	anytime	Immediately	0	RW
	acceleration and			acceleration/				
	deceleration time			deceleration				
	selection 0-Use			time of the				
	acceleration/deceler			16th speed				
	ation time			command				
	P04.17 P04.18							
	1- Using							
	acceleration/							
	deceleration time 1							
	2- Using							
	acceleration/							
	deceleration time 2							
	3- Using							
	acceleration/deceler							
	ation time 3							
	4- Using							
	acceleration/							
	deceleration time 4							

The relevant input function bits are as follows.

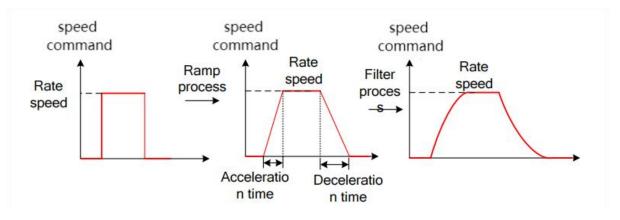

Function bits	Bit description
INFn.17	Select 0 for the speed segment number of multi-step speed
INFn.18	Select 1 for the speed segment number of multi-step speed
INFn.19	Select 2 for the speed segment number of multi-step speed
INFn.20	Select 3 for the speed segment number of multi-step speed

According to the status of INFn17 \sim 20, multi-speed speed segment number = INFn.20*8 + INFn.19*4 + INFn.18*2 + INFn.17*1 +1. See the table below for details.

INFn.20	INFn.19	INFn.18	INFn.17	Multi-speed running segment						
				number						
0	0	0	0	1						
0	0	0	1	2						
0	0	1	0	3						
1	1	1	1	16						

5.3.3 UP/DOWN speed mode

When the UP/DOWN speed mode is selected, the speed is controlled by the input detail bits INFn.63 (UP) and INFn.64 (DOWN). When it is detected that INFn.63 is active, the speed raises; when it is detected that INFn.64 is active, the speed decreases; when both signals are deactive, the speed remains unchanged. The timing diagram is shown below.



The relevant input function bits are as follows.

Function bits	Bit description
INFn.63	UP signal
INFn.64	DOWN signal

5.3.4 Ramp control and speed command filtering

All speed sources have ramp control to prevent the impact of a given speed on the machine. The ramp control is achieved by setting the acceleration/deceleration time of the speed. The speed command after the ramp processing is then subjected to low-pass filtering to make the speed command smoother. For example, when the set speed is the rated speed, the actual running speed is processed as shown below.

It should be noted that the actual acceleration/deceleration time is related to the change of the given speed. The set acceleration/deceleration time refers to the acceleration time required to accelerate from 0 to the rated speed.

Actual acceleration and deceleration time

= Set acceleration and deceleration time
$$\times \frac{\text{Variation of the input speed command}}{\text{Rated speed}}$$

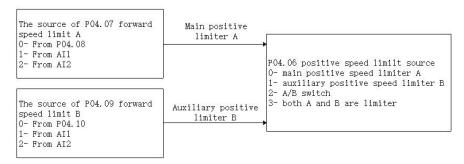
The advantage of filtering is to make the speed output smoother, but the disadvantage is that the speed command will lag. The larger the set filter time constant, the smoother the speed output and the longer the lag time.

Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P04.20	Time const for speed command filter	0~32767	ms	Set the acceleration/ deceleration ramp time	anytime	Immediate ly	20	RW

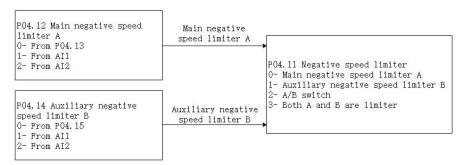
VECTOR

				constant for				
				the speed				
				command.				
P04.17	Acceleration time	0~65535	ms	The time for	anytime	Immediate	500	RW
				the speed		ly		
				command to				
				accelerate				
				from 0 to the				
				rated speed.				
				The				
				calculation				
				formula of				
				the actual				
				acceleration				
				time is as				
				follows:				
				Actual				
				acceleration				
				time t				
				1=change of				
				speed				
				command/rat				
				ed speed×				
				speed				
				command				
				acceleration				
				time				
P04.18	Deceleration time	0~65535	ms	The time for	anytime	Immediate	500	RW
				the speed		ly		
				command to				
				decelerate				
				from the				
				rated speed				
				to 0. Actual				
				deceleration				
				time t2=				
				Change				
				of speed				
				command/rat				
				ed speed×				
				speed				
				command				
				deceleration				


- 1					ı
- 1					1
- 1			tima		1
- 1			ume		i

5.3.5 speed limit

Speed limiting includes forward limiting and reverse limiting, each of which has a primary limiting A source and an auxiliary limiting B source. That is, the main positive limiter A, the auxiliary positive limiter B, the main negative limiter A, and the auxiliary negative limiter B.


5.3.5.1 Positive speed limiting

The source of the forward speed limit is shown below. There are two types of positive speed limiting, one is the main positive speed limiter A, and the other is the auxiliary positive speed limiter B. Both speed limits have different speed limit sources.

5.3.5.2 Negative speed limiter

The source of the reverse speed limit is shown below. There are two types of reverse speed limiting, one is the main negative speed limiter A, and the other is the auxiliary reverse speed limiter B. Both speed limits have different speed limit sources.

The speed limit related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P04.06	source of positive	0~3	-	Set the	anytime	Immediate	0	RW
	speed limiting			source of the		ly		

	0-main positive			forward				
	speed limiter A			speed				
	1-auxiliary reverse			command				
	speed limiter B			limit.				
	2- A/B switch							
	3-both A and B are							
	limiter							
D04.07		0.2		a				DIV
P04.07	Source of main	0~3	-	Select the	anytime	Immediate	0	RW
	positive speed			source of the		ly		
	limiter A			positive				
	0- from P04.08			speed limit				
	1- fromAI1			A.				
	2- fromAI2							
	3- fromAI3							
	(The hardware does							
	not support)							
P04.08	Set value of positive	0~32767	rpm	When the	anytime	Immediate	3000	RW
	speed limit A		1	forward		ly		
	1			speed limit A		,		
				selects the				
				digital given				
				source, set				
				the required				
				speed limit				
				value				
				through				
D 04.00	2 2 11	0.2		P04.08.				DIV
P04.09	Source of auxiliary	0~3	-	Select the	anytime	Immediate	0	RW
	reverse speed limiter			source of the		ly		
	В			positive				
	0- FromP04.10			speed limiter				
	1- FromAI1			B.				
	2- FromAI2							
	3- FromAI3							
	(The hardware does							
	not support)							
P04.10	Set value of positive	0~32767	rpm	When the	anytime	Immediate	3000	RW
	speed limiter B			positive		ly		
				speed limit B				
				selects the				
				digital given				
				source, set				
				the required				
			1		1			1

speed limit value through P04.10. P04.11 source of negative 0~3 Set the anytime Immediate 0 RWspeed limiting source of the 1y 0-main negative reverse speed limiter A speed 1- auxiliary negative command speed limiter B limiter. 2- A/B switch 3- both A and B are limiter P04.12 Source 0~3 Select the Immediate 0 RW of main anytime negative speed source of the ly limiter reverse speed limiter A, 0- FromP04.13 A. 1- FromAI1 2- FromAI2 3- FromAI3 (The hardware does not support) P04.13 Digital value of 0~32767 When the anytime Immediate 3000 RW rpm main negative speed reverse ly limiter A speed limit A selects the digital given source, set the required speed limit value through P04.13 P04.14 Source of auxiliary 0~3 Selects the Immediate 0 RW anytime negative speed source of ly limiter B reverse 0- FromP04.15 speed limiter 1- FromAI1 B. 2- FromAI2 3- FromAI3 (The hardware does not support)

<u>VECTOR</u>

P04.15	Digital value of	0~32767	rpm	When the	anytime	Immediate	3000	RW
	auxiliary negative			reverse		ly		
	speed limiter B			speed limit B				
				selects the				
				digital given				
				source, set				
				the required				
				speed limit				
				value				
				through				
				P0415.				

The relevant input function bits are as follows.

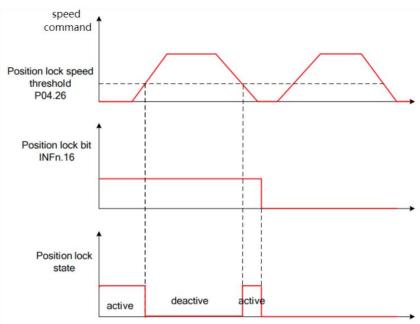
Function bits	Bit description
INFn.07	Switch the positive speed limit source A/B, when valid, use positive limit B
INFn.08	Switch the negative speed limit source A/B, when valid, use negative limit B

5.3.6 Torque limit

Please refer to "5.4.2 Torque Limit" in torque mode. Both are shared.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P05.10	Torque limit method 0- Forward and reverse limit are from positive limiting 1- Forward and reverse limit separately	0~1	-	Set the torque limit method.	anytime	Immediate ly	0	RW
P05.11	Positive torque limiting source 0- Forward Limit A 1- Forward limiter B 2- A/B switching 3- A and B are simultaneously limit	0~3	-	Sets the source of the positive torque limit.	anytime	Immediate ly	0	RW
P05.12	Source of forward torque limit A 0- from P05.13	0~3	-	Set the source of the positive	anytime	Immediate ly	0	RW

	1- from AI1			torque limit				
	2- from AI2			A.				
	3- from AI3			A.				
	(The hardware does							
D05.12	not support)	0.200.0	0./	****			150.0	DIII
P05.13	Set value of forward	0~300.0	%	When	anytime	Immediate	150.0	RW
	torque limiter			P05.12		ly		
	A			selects the				
				digital given				
				source, set				
				the required				
				torque				
				percentage				
				through				
				P05.13.				
P05.14	Forward Torque	0~3	-	Set the	anytime	Immediate	0	RW
	Limit B Source			source of		ly		
	0- from P05.15			positive				
	1- from AI1			torque limit				
	2- from AI2			В.				
	3- from AI3							
	(The hardware does							
	not support)							
P05.15	Set value of forward	0~300.0	%	When	anytime	Immediate	150.0	RW
	torque limiter			P05.14		ly		
	В			selects the				
				digital given				
				source, set				
				the required				
				torque				
				percentage				
				through				
D05 16	Davianas	0.2		P05.15.	on-4:	Image: - 3° '	0	DW
P05.16	Reverse torque	0~3	-	Sets the	anytime	Immediate	0	RW
	limiting source			source of the		ly		
	0- Reverse Limit A			reverse				
	1- Reverse limit B			torque limit.				
	2- A/B switching							
	3-A and B are							
	simultaneously							
	limit							
P05.17	Source of reverse	0~3	-	Set the	anytime	Immediate	0	RW
	torque limit A			source of the		ly		


	0.6 707.10							
	0- from P05.18			reverse				
	1- from AI1			torque limit				
	2- from AI2			A.				
	3- from AI3							
	(The hardware does							
	not support)							
P05.18	Set value of reverse	0~300.0	%	When	anytime	Immediate	150.0	RW
	torque limiter			P05.17		ly		
	A			selects the				
				digital given				
				source, set				
				the required				
				torque				
				percentage				
				through				
				P05.18.				
P05.19	Reverse Torque	0~3	-	Set the	anytime	Immediate	0	RW
	Limit B Source 0-			source of		ly		
	from P05.20			reverse				
	1- from AI1			torque limit				
	2- from AI2			В.				
	3- from AI3							
	(The hardware does							
	not support)							
P05.20	Set value of reverse	0~300.0	%	When	anytime	Immediate	150.0	RW
	torque limiter			P05.19		ly		
	В			selects the				
				digital given				
				source, set				
				the required				
				torque				
				percentage				
				through				
				P05.20.				

5.3.7 Zero position fixation function

The zero-position fixing function means that in the speed control mode, when the zero-position fixing DI signal INFn.16 is valid, and the speed command amplitude is less than or equal to the set value of P04.26, the servo motor enters the zero-position locking state. At this time, a position loop is built inside the servo drive, and the speed command is invalid; the servo motor is fixed within ± 1 pulse of the effective position of the zero-position fixation.

Even if it rotates due to external force, it will return to the zero-position fixation. If the amplitude of the speed command is greater than P04.26, the servo motor exits the zero-position lock state, and the servo motor continues to run according to the current input speed command.

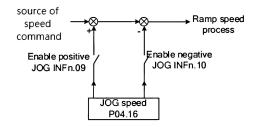
If the zero-position fixed DI signal INFn.16 is invalid, the zero-position fixation function is invalid.

Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P04.26	Zero-position fixed speed threshold	0~32767	rpm	In the speed control mode, when the zero-position fixed DI signal is valid, when the amplitude of the speed command is less than or equal to the value set by P04.26, the	anytime	Immediate ly	5	RW
				servo motor				

T 71	Α.	\sim	n.	\sim	_
V	нΊ		П	1	к
v	- 1			. ,	ı١

		enters the		
		zero-position		
		locking state.		


Related input function bits.

Function bits	Bit description
INFn.16	Zero position fixed function enable

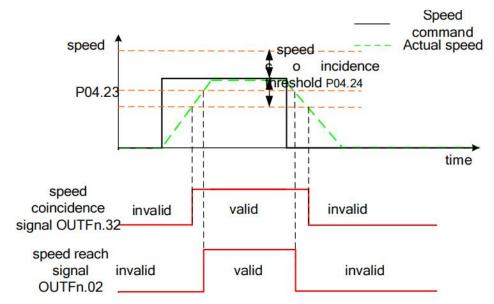
5.3.8 Other functions

5.3.8.1 Speed JOG

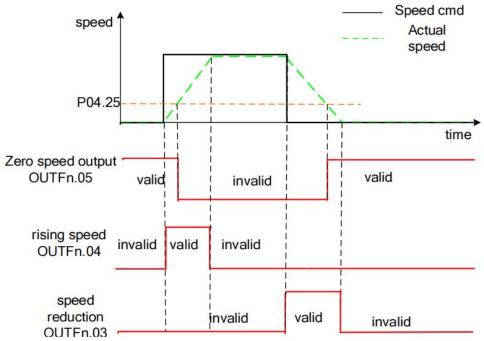
In the speed mode, there are two kinds of forward jog and reverse jog, which are controlled by INFn.09 and INFn.10 respectively. When INFn.09 or INFn.10 is valid, the speed output will superimpose a jog speed P04.16 on the basis of the current speed command. As shown below.

5.3.8.2 Speed command reverse

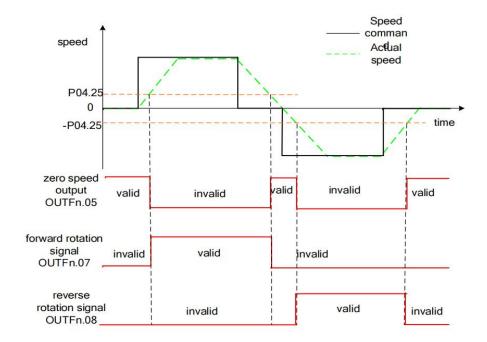
When INFn.11 is active, the speed command will be inverted.


5.3.8.3 Speed pause

When INFn.13 is valid, the speed command is set to zero directly.


5.3.8.4 Speed related signal output

When the difference between the actual output speed P04.21 and the speed given command is less than the speed consistency threshold P04.24, the speed consistency signal OUTFn.32 is valid. When the absolute value of the actual output speed P04.21 is greater than the speed reaching threshold P04.23, the speed reaching signal OUTFn.02 is valid.


The signal output is shown in the figure below.

When the amplitude of the actual output speed P04.21 is less than the zero-speed threshold P04.25, the zero-speed signal OUTFn.05 is valid. When the amplitude of acceleration is greater than the acceleration threshold P04.27, the acceleration OUTFn.04 is valid. When the amplitude of the deceleration is greater than the acceleration and deceleration threshold P04.27, the deceleration OUTFn.03 is valid. The signal output is shown in the figure below.

When the actual output speed P04.21 is greater than the zero speed threshold, the forward rotation signal OUTFn.07 is valid; when the actual output speed P04.21 is less than the negative zero speed threshold, the reverse rotation signal OUTFn.08 is valid. The signal output is shown in the figure below.

5.3.8.5 Speed feedback filtering and display filtering

Perform low-pass filtering on the speed feedback value by setting the software filtering time constant P00.10. You can also set the speed display filter time constant P04.22 to filter the speed display value.

5.3.8.6 Related parameters

Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P04.16	JOG speed	0~32767	rpm	When using the DI jog function, set the jog running speed command value. Note: This value will be modified during keyboard	anytime	Immediate ly	20	RW

VECTOR

jog test operation, but will not be saved. P04.17 acceleration time 0~65535 The time for Immediate 500 RWanytime msthe speed ly command to accelerate from 0 to the rated speed. The calculation formula of the actual acceleration time is as follows: Actual acceleration time t 1=change of speed command/ra ted speed× speed command acceleration time P04.18 deceleration time 0~65535 The time for RW ms anytime Immediate 500 the speed ly command to decelerate from the rated speed to 0. Actual deceleration time t 2=change of speed command/ra ted speed \times speed command

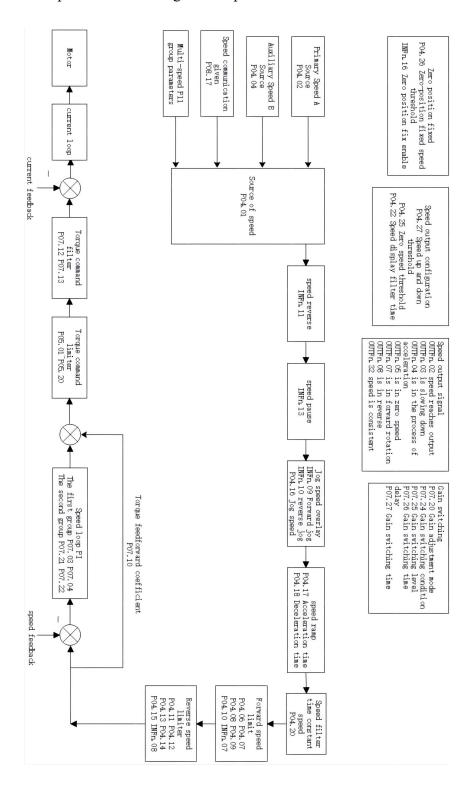
				deceleration				
				time				
P04.20	Speed command	0~32767	ms	Set the	anytime	Immediate	20	RW
104.20	first-order	032707	1113	speed	anythic	ly	20	IX VV
	filtering time			command		l ly		
	constant			filter time				
	Constant			constant.				
P04.21	Filtered speed value		rpm	Displays the	_	_	_	RO
101.21	Thiered speed value		Ipin	velocity				Ro
				value after				
				velocity				
				filtering.				
P04.22	Speed display filter	0~32767	ms	Set the filter	anytime	Immediate	300	RW
1 04.22	time	0/~32707	1115	time for	anythic	ly	300	IXW
	time			speed		l ly		
				display.				
P04.23	Speed arrival	0~32767	******	When the	anutima	Immediate	1000	RW
P04.23	Speed arrival threshold	0~32/0/	rpm	absolute	anytime		1000	KW
	unesnoid			value of the		ly		
				actual speed of the servo				
				motor after				
				filtering				
				exceeds				
				P04.23, it is considered				
				that the				
				actual speed of the servo				
				motor				
				reaches the				
				expected				
				_				
				value, and the servo				
				drive can				
				output the				
				speed				
				reaching				
				signal at this				
D04.24	Const.	0.22777		time.		Turne 1' /	10	DII
P04.24	Speed consistent	0~32767	rpm	In the speed	anytime	Immediate	10	RW
	threshold			control		ly		
				mode, when				

<u>VECTOR</u>

			1					
				the absolute				
				value of the				
				deviation				
				between the				
				actual speed				
				P04.21 of				
				the filtered				
				servo motor				
				and the				
				speed				
				command is				
				less than				
				P04.24, it is				
				considered				
				that the				
				actual speed				
				of the motor				
				reaches the				
				set value of				
				the speed				
				command,				
				and the				
				drive can				
				output a				
				speed				
				consistent				
				signal at this				
				time.				
P04.25	Zero speed threshold	0~32767	rpm	When the	anytime	Immediate	5	RW
	1		1	absolute		ly		
				value of the		j		
				actual speed				
				of the servo				
				motor after				
				filtering is				
				less than				
				P04.25, it is				
				considered				
				that the				
				actual speed				
				of the servo				
				motor is				
				close to				
				ciose to				

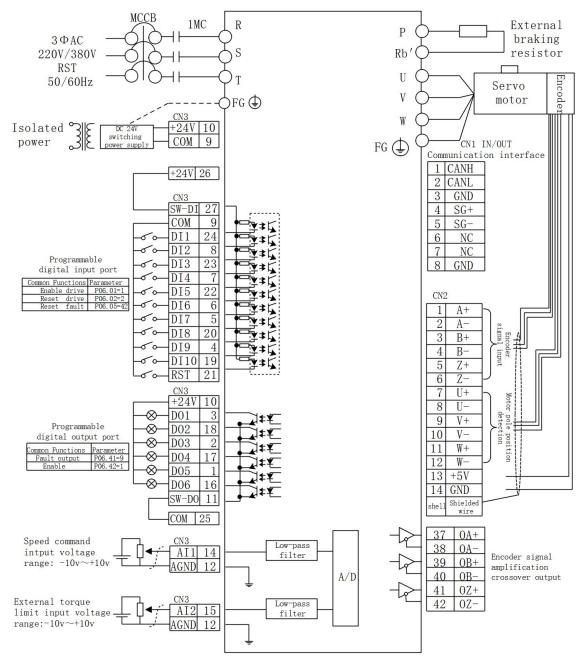
<u>VECTOR</u>

P04.27 Lifting speed threshold speed to be in the speed-up/do wn-speed to be in the speed-up/do wn-speed state. P00.10 Motor encoder 0~32767 ms Set the time for software filter time software filter time speed takes effect speed takes software filter time speed takes software filtering.									
P04.27 Lifting speed threshold P04.27 In the speed control mode, when the absolute value of the motor acceleration is greater than a certain threshold P04.27, the motor is considered to be in the speed-up/do wn-speed state. P00.10 Motor encoder software filter time P05.20 A Set the time for software anytime reset stakes P06.10 Motor encoder software filter time P07.27 Motor encoder software softwar					static, and				
P04.27 Lifting speed 0~32767 rpm/s threshold P04.27 Lifting speed threshold P04.27 Lifting speed threshold P04.27 Lifting speed threshold P04.27 Lifting speed threshold P04.27 the motor acceleration is greater than a certain threshold P04.27, the motor is considered to be in the speed to be in the speed state. P00.10 Motor encoder software filter time P04.27 threshold P04.27 threshold to be in the speed state. P00.10 Motor encoder software filter time P05.27 Threshold signal at this time. P15.27 In the speed anytime anytime reset software signal anytime reset signal at this time. P06.10 Motor encoder software for software signal at this time.					the servo				
P04.27 Lifting speed threshold speed to be in the speed to be in the speed-up/do wn-speed state. P00.10 Motor encoder software filter time speed signal at this time. Immediate 375 RW limits anytime threshold limits speed anytime threshold speed speed anytime threshold wn-speed state.					drive can				
P04.27 Lifting speed threshold threshold threshold speed to be in the speed-up/do wn-speed state. P00.10 Motor encoder software filter time speed takes speed tak					output a				
P04.27 Lifting speed threshold speed to be in the speed to be in the speed state. P00.10 Motor encoder software filter time speed threshold speed to software software for software for software software for software speed takes speed to state.					zero-speed				
P04.27 Lifting speed threshold speed to be in the speed control mode, when the absolute value of the motor acceleration is greater than a certain threshold speed to be in the speed to be in the speed speed speed speed speed speed speed speed software filter time speed to software software filter time speed takes speed takes					signal at this				
threshold control mode, when the absolute value of the motor acceleration is greater than a certain threshold P04.27, the motor is considered to be in the speed-up/do wn-speed state. P00.10 Motor encoder 0~32767 ms Set the time for software filter time speed stakes					time.				
mode, when the absolute value of the motor acceleration is greater than a certain threshold P04.27, the motor is considered to be in the speed-up/do wn-speed state. P00.10 Motor encoder 0~32767 ms Set the time anytime reset 5 RW software filter time	P04.27	Lifting speed	0~32767	rpm/s	In the speed	anytime	Immediate	375	RW
the absolute value of the motor acceleration is greater than a certain threshold P04.27, the motor is considered to be in the speed-up/do wn-speed state. P00.10 Motor encoder 0~32767 ms Set the time anytime reset 5 RW software filter time		threshold			control		ly		
value of the motor acceleration is greater than a certain threshold P04.27, the motor is considered to be in the speed-up/do wn-speed state. P00.10 Motor encoder software filter time Note that is a constant of the motor is considered to be in the speed-up/do wn-speed state.					mode, when				
motor acceleration is greater than a certain threshold P04.27, the motor is considered to be in the speed-up/do wn-speed state. P00.10 Motor encoder software filter time motor acceleration is greater than a certain threshold P04.27, the motor is considered to be in the speed-up/do wn-speed state.					the absolute				
acceleration is greater than a certain threshold P04.27, the motor is considered to be in the speed-up/do wn-speed state. P00.10 Motor encoder o~32767 ms Set the time anytime reset 5 RW software filter time					value of the				
is greater than a certain threshold P04.27, the motor is considered to be in the speed-up/do wn-speed state. P00.10 Motor encoder 0~32767 ms Set the time anytime reset 5 RW software filter time					motor				
P00.10 Motor encoder software filter time than a certain threshold P04.27, the motor is considered to be in the speed-up/do wn-speed state. Pool of the software filter time software for software takes					acceleration				
P00.10 Motor encoder software filter time Certain threshold P04.27, the motor is considered to be in the speed-up/do wn-speed state.					is greater				
threshold P04.27, the motor is considered to be in the speed-up/do wn-speed state. P00.10 Motor encoder o~32767 ms Set the time for software filter time threshold P04.27, the motor is considered to be in the speed-up/do wn-speed state.					than a				
P04.27, the motor is considered to be in the speed-up/do wn-speed state. P00.10 Motor encoder 0~32767 ms Set the time anytime reset 5 RW for software filter time					certain				
motor is considered to be in the speed-up/do wn-speed state. P00.10 Motor encoder 0~32767 ms Set the time for software filter time for software takes					threshold				
considered to be in the speed-up/do wn-speed state. P00.10 Motor encoder o~32767 ms Set the time for software filter time for software takes					P04.27, the				
to be in the speed-up/do wn-speed state. P00.10 Motor encoder 0~32767 ms Set the time anytime reset 5 RW software filter time for software					motor is				
speed-up/do wn-speed state. P00.10 Motor encoder 0~32767 ms Set the time for software filter time for software takes					considered				
wn-speed state. P00.10 Motor encoder 0~32767 ms Set the time anytime reset 5 RW software filter time for software					to be in the				
P00.10 Motor encoder 0~32767 ms Set the time anytime reset 5 RW software filter time for software					speed-up/do				
P00.10 Motor encoder 0~32767 ms Set the time anytime reset 5 RW software filter time for software					wn-speed				
software filter time for software takes					state.				
	P00.10	Motor encoder	0~32767	ms	Set the time	anytime	reset	5	RW
filtering. effect		software filter time			for software		takes		
					filtering.		effect		


Related input function bits.

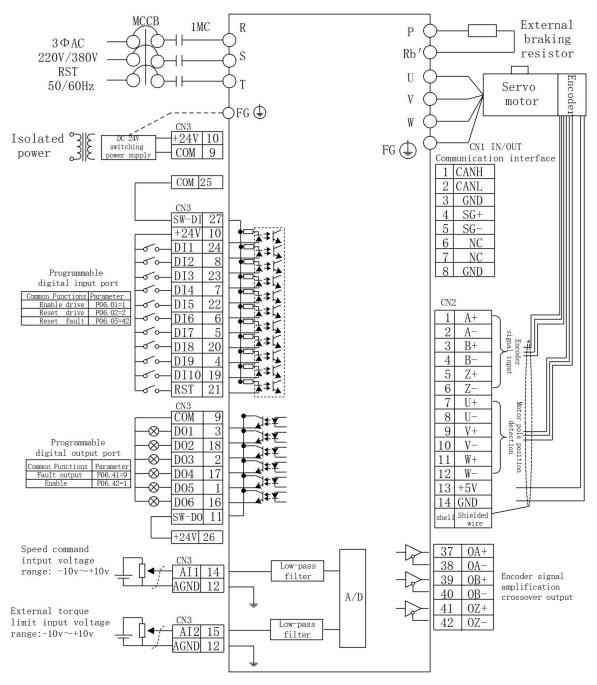
Function bits	Bit description
INFn.09	Forward speed jog
INFn.10	Reverse speed jog
INFn.11	Speed reverse
INFn.12	Main speed A/B switching
INFn.13	Speed pause

Related output function bits.


Function bits	Bit description
OUTFn.02	Speed arrives
OUTFn.03	Speed down
OUTFn.04	Speed up
OUTFn.05	Zero speed
OUTFn.06	Speed overrun
OUTFn.07	Forward rotate
OUTFn.08	Reverse rotate
OUTFn.32	Consistent speed

5.3.9 Internal operation block diagram of speed mode

5.3.10 Typical Wiring Diagram for Speed Mode


5.3.10.1 NPN wiring for DI/DO

MCCB: air switch 1MC: AC contactor

- 1. Indicates twisted pair shielded wire.
- 2. The DC24V power supply is prepared by the user. The DC24V switching power supply should be powered by an isolation transformer, and its ground terminal should be directly connected to the ground terminal of the driver.

5.3.10.2 PNP wiring for DI/DO

MCCB: air switch 1MC: AC contactor

- 1. Indicates twisted pair shielded wire.
- 2. The DC24V power supply is prepared by the user. The DC24V switching power supply should be powered by an isolation transformer, and its ground terminal should be directly connected to the ground terminal of the driver.

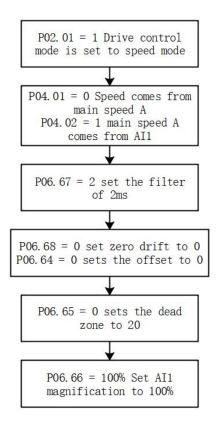
5.3.11 Servo uses analog quantity to control the speed

(1) Analog signal wiring

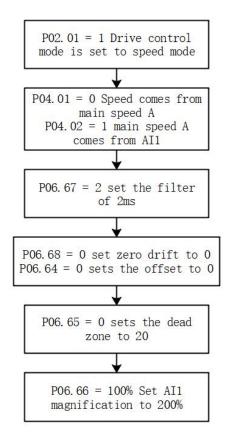
The analog signal can be input from AI1 (pin 14) or AI2 (pin 15). Taking AI1 as an example, the analog signal line is connected to AI1 (pin 14) of CN3, and the analog ground is connected to AGND (pin 12).

(2) Correspondence between analog voltage and actual speed command

Under the default parameters, -10V corresponds to the negative rated speed of the motor and 10V corresponds to the positive rated speed of the motor. Taking the AI1 input command voltage as an example, if you need to change the correspondence, you can modify the AI1 offset (P06.64) and AI1 magnification (P06.66). If the dead band is set to zero, the corresponding relationship between the input voltage and the speed command is:


actual speed command = rate speed \times (AI1 magnification P06.66)% \times (AI1 input voltage P06.61) - (AI1 Zero drift P06.68) - (AI1 offset P06.64) 10000

For example:

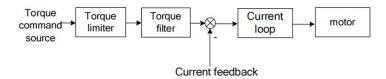

- ➤ By default, AI1 magnification=100.0%, AI1 zero drift=0 mV; AI1 offset=0 mV; Then when ±10000mV is input, the actual output speed is = ± rated speed;
- If AI1 magnification=200.0%; AI1 zero drift=0mV; AI1 offset=0mV; Then when \pm 5000mV is input, the actual output speed is = \pm rated speed;
- ➤ If AI1 magnification=200.0%; AI1 zero drift=0 mV; AI1 offset=5000mV; When inputting 0-10000mV, the actual output speed is $=\pm$ rated speed;

(3) Parameter setting step

a. Input the speed command with AI1, input $\pm 10 \text{V}$ corresponding to \pm rated speed as an example:

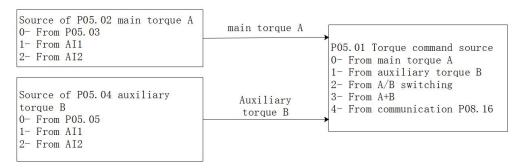
b. Take AI1 input speed command, input \pm 5V corresponding to \pm rated speed as an example:

(4) Enable the motor


By default, P06.01=1, the enable signal is input from DI1. If P06.21 is set to 1, then the servo can be enabled without receiving any signal when it is powered on.

(5) Zero drift correction

When the analog input is 0mV, set P06.79=4 once to trigger zero drift correction once. Zero drift can also be corrected via DI. Refer to the VC Servo User Manual for details.


5.4 Torque mode

Torque mode is a control mode in which the output torque of the motor is the control target, such as tension control. The implementation of torque mode is shown in the figure below.

5.4.1 Torque command source

There are two kinds of torque commands for the servo to choose from, namely, the main torque command A and the auxiliary torque command B. These two torques can be superimposed or switched with each other. Both main torque A and auxiliary torque B have multiple torque sources. As shown in the picture below.

Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method
P05.01	Torque command source	0~5	-	anytime	Immediate	0	RW
	0- main torque command				ly		
	A						
	1- auxiliary torque						
	command B						

	2- INFn.03 switching						
	A/B						
	3- A+B						
	4- from P08.16				- 4		
P05.02	Source of main torque	0~3	-	anytime	Immediate	0	RW
	command A				ly		
	0- from P05.03						
	1- from AI1						
	2- from AI2						
	3- from AI3						
	(The hardware does not						
	support)						
P05.03	Digital value of main	-300.0~30	%	anytime	Immediate	0.0	RW
	torque command A(When	0.0			ly		
	the main torque A selects						
	the digital given source,						
	set the required torque						
	percentage through						
	P05.03.)						
P05.04	Source of auxiliary	0~3	-	anytime	Immediate	0	RW
	torque command B				ly		
	0- from P05.05						
	1- from AI1						
	2- from AI2						
	3- from AI3						
	(The hardware does not						
	support)						
P05.05	Digital value of auxiliary	-300.0~30	%	anytime	Immediate	0.0	RW
	torque command B(When	0.0			ly		
	the auxiliary torque B	0.0			-5		
	selects the digital given						
	source, set the required						
	torque percentage through P05.05.)						
	unough Pos.os.)						
P08.16	Torque communication	-3276.7~3	%	anytime	Immediate	0.0	RW
100.10	given(In the torque	276.7	/ 0		ly	0.0	10,7
	control mode, when the	270.7			1,7		
	torque command source						
	is communication given,						

T 71	Α.	\sim	n ,	<u> </u>	_
V/	нΊ		11	١	k
v	- 1		ı١		ı١

set the torque percentage		
with an accuracy of		
0.1%.)		

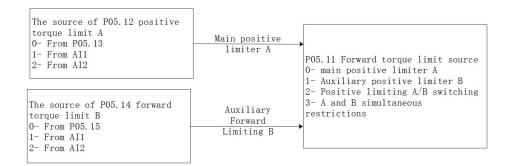
Related input function bits.

Function bits	Bit description
INFn.03	Switch the main torque command A and the auxiliary torque command B, and use the auxiliary
	torque command B when valid

When the torque command comes from AIx, please refer to "6.3.1 Analog Input AI" for details.

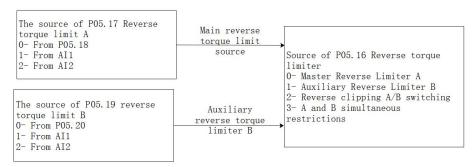
5.4.2 Torque limiting

Torque limiting is achieved by limiting the output current of the driver to limit the output torque of the motor. The larger the torque limit value is, the larger the motor output torque is, and the easier the driver is to over-current. There are two kinds of limiting methods for torque limiting. One is that the forward and reverse limiters are from the positive limiter value; the other is the positive and negative limiting separately. Which one depends on P05.10. Both the positive limiting and the reverse limiting have a primary limiter A source and an auxiliary limiter B source, respectively a primary forward torque limiter A, an auxiliary forward torque limiter B.


In addition to the above torque limiter, in order to protect the motor, the torque output is limited according to the three values of the rated motor current P00.01, the rated current of the driver P01.03, and the current peak current percentage P00.24.the value of this limit is calculate as follows:

Motor torque limiter =

 $\frac{\text{Motor rated current P00.01}}{\text{Drive rated current P01.03}} \times \text{Motor peak current percentage P00.24}$


5.4.2.1 Positive torque limiting

The source of the positive torque limit is shown below. There are two types of positive torque limiting, one is the main positive torque limiter A, and the other is the auxiliary positive limiter B. Both torque limits have different sources of torque.

5.4.2.2 Negative torque limiting

The source of the negative torque limit is shown below. There are two types of negative torque limiting, one is the main negative torque limiter A, and the other is the auxiliary negative torque limiter B. Both torque limiters have different sources.

Related parameters are as follows

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P05.10	Torque limit method 0- Forward and reverse limit are from positive limiting 1- Forward and reverse limit separately	0~1	-	Select the torque limit method.	anytime	Immediatel y	0	RW
P05.11	Positive torque limiting source 0- Forward Limit A 1- Forward limiter B 2- A/B switching 3- A and B are simultaneously limit	0~3	-	Select the forward torque limit source.	anytime	Immediatel y	0	RW
P05.12	Source of forward torque limit A	0~3	-	Set the torque	anytime	Immediatel y	0	RW

0- from P05.13 command 1- from AI1 source of 2- from AI2 main torque 3- from AI3 command A. (The hardware does not support) P05.13 Set value of forward 0~300.0 % When the anytime Immediatel 150.0 RWtorque limiter forward y A torque limit A selects the digital given source, set the required torque percentage through P05.13. P05.14 RW Forward Torque 0~3 Set the anytime Immediatel 0 Limit B Source torque 0- from P05.15 command 1- from AI1 source of 2- from AI2 auxiliary 3- from AI3 torque (The hardware does command B. not support) P05.15 Set value of forward 0~300.0 % When the 150.0 RW anytime Immediatel torque limiter forward В torque limiter B selects the digital given source, set the required torque percentage through P05.15. P05.16 Reverse 0~3 Select the anytime Immediatel 0 RW torque limiting source source of the 0- Reverse Limit A reverse 1- Reverse limit B torque 2- A/B switching limiter. 3- A and B are

<u>VECTOR</u>

	simultaneously limit							
P05.17	Source of reverse	0~3	-	Set the	anytime	Immediatel	0	RW
	torque limit A 0- from P05.18			torque command		у		
	1- from AI1			source of the				
	2- from AI2			reverse				
	3- from AI3			torque				
	(The hardware does			limiter A.				
	not support)							
P05.18	Set value of reverse	0~300.0	%	When the	anytime	Immediatel	150.0	RW
	torque limiter			reverse		у		
	A			torque limit				
				A selects the				
				digital given				
				source, set				
				the required				
				torque				
				percentage				
				through				
				P05.18.				
P05.19	Reverse Torque	0~3	-	Set the	anytime	Immediatel	0	RW
	Limit B Source			torque		у		
	0- from P05.20			command				
	1- from AI1			source of the				
	2- from AI2			reverse				
	3- from AI3			torque				
	(The hardware does			command B.				
	not support)							
P05.20	Set value of reverse	0~300.0	%	When the	anytime	Immediatel	150.0	RW
	torque limiter			reverse		у		
	В			torque				
				limiter B				
				selects the				
				digital given				
				source, set				
				the required				
				torque				
				percentage				
				through				
				P05.20.				

Related input function bits.

Function bits	Bit description
INFn.05	Forward torque limit source A/B switching, positive limit B is used when valid
INFn.06	Reverse torque limit source A/B switch, when valid, use reverse limit B

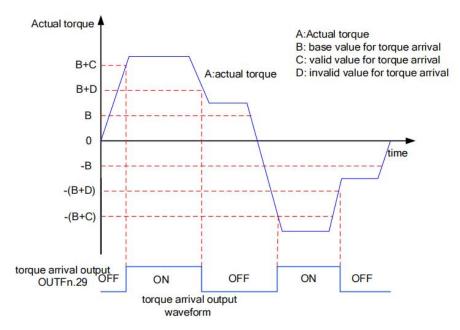
5.4.3 speed limit

When there is no load, given a large torque, the motor speed will increase all the time, so it is necessary to limit the speed. The source of speed limit is the same as the speed limit in speed mode. The relevant parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P04.06	source of positive speed limiting 0- main positive speed limiter A 1- auxiliary reverse speed limiter B 2- A/B switch 3-both A and B are limiter	0~3	-	Set the source of forward speed command limiter.	anytime	Immediatel y	0	RW
P04.07	Source of main positive speed limiter A 0- from P04.08 1- fromAI1 2- fromAI2 3- fromAI3 (The hardware does not support)	0~3	-	Select the source of the positive speed limiter A.	anytime	Immediatel y	0	RW
P04.08	Digital value of positive speed limiter A	0~32767	rpm	When the forward speed limit A selects the digital given	anytime	Immediatel y	3000	RW

				source, set				
				the required				
				speed limit				
				value				
				through				
				P04.08.				
P04.09	Source of auxiliary	0~3	-	Select the	anytime	Immediatel	0	RW
	reverse speed limiter			source of		у		
	B0- fromP04.10			positive				
	1- fromAI1			speed limiter				
	2- fromAI2			В.				
	3- fromAI3							
	(The hardware does							
	not support)							
P04.10	Digital value of	0~32767	rpm	When	anytime	Immediatel	3000	RW
	positive speed		1	forward		у		
	limiter B			speed limit B				
				selects				
				digital given				
				source, set				
				the required				
				speed limit				
				value				
				through				
				P04.10.				
P04.11	source of negative	0~3	_	Set the	anytime	Immediatel	0	RW
104.11	speed limiting	0/3	_	source of the	anythic		U	IX VV
	0- main negative			reverse		У		
	speed limiter A			speed				
	-			command				
	1- auxiliary negative			limiter.				
	speed limiter B			limiter.				
	2- A/B switch							
	3- both A and B are							
D04.12	limiter	0.2		G-1 (1)	1	T 1' . 1	0	DW
P04.12	Source of main	0~3	-	Select the	anytime	Immediatel	0	RW
	negative speed			source of the		У		
	limiter A			reverse				
	0- fromP04.13			speed limiter				
	1- fromAI1			A.				
	2- fromAI2							
	3- fromAI3							
	(The hardware does							
	not support)							

D04.12	Distal 1 0	0.22767		1171 -1		т 11 . 1	2000	DW
P04.13	Digital value of	0~32767	rpm	When the	anytime	Immediatel	3000	RW
	main negative speed			reverse		У		
	limiter A			speed limit A				
				selects the				
				digital given				
				source, set				
				the required				
				speed limit				
				value				
				through				
				P04.13.				
P04.14	Source of auxiliary	0~3	-	Selects the	anytime	Immediatel	0	RW
	negative speed			source of		у		
	limiter B			reverse				
	0- fromP04.15			speed limiter				
	1- fromAI1			B.				
	2- fromAI2							
	3- fromAI3							
	(The hardware does							
	not support)							
P04.15	Digital value of	0~32767	rpm	When the	anytime	Immediatel	3000	RW
1015	auxiliary negative	0 32707	l Pili	reverse		у	2000	1011
	speed limiter B			speed limit B		,		
	speed minter B			selects the				
				digital given				
				source, set				
				the required				
				speed limit				
				value				
				through				
				P0415.				
P05.25	Time threshold for	0~32767	0.25	When the	anytime	Immediatel	10	RW
	switching torque		ms	amplitude of		У		
	mode to velocity			the speed				
	mode			exceeds the				
				speed limit				
				value plus				
				the speed				
				limit speed				
				threshold				
				(P05.26),				
				and the				
				continuous				


				torque mode				
				is switched				
				to the speed				
				mode time				
				threshold				
				(P05.25), a				
				speed loop is				
				constructed				
				to make the				
				speed				
				converge to				
				the limit				
				Inside.				
P05.26	Speed threshold for	0~32767	rpm	When the	anytime	Immediatel	30	RW
	speed torque mode		_	amplitude of		у		
	switching			the speed				
				exceeds the				
				speed limit				
				value plus				
				the speed				
				limit speed				
				threshold				
				(P05.26),				
				and the				
				continuous				
				torque mode				
				is switched				
				to the speed				
				mode time				
				threshold				
				(P05.25), a				
				speed loop is				
				constructed				
				to make the				
				speed				
				converge to				
				the limit				
				Inside.				
P05.27	Time threshold for	0~32767	0.25	When the	anytime	Immediatel	200	RW
	speed mode to		ms	servo runs in		у		
	torque mode switch			the torque				
	_			mode, but				
				due to the				

VECTOR

				speed limit,				
				after the				
				speed loop is				
				constructed,				
				the time				
				threshold for				
				switching				
				from the				
				speed mode				
				to the torque				
				mode is				
				determined				
				by P05.27				
P05.28	Speed limit	0~32767	ms	When the	anytime	Immediatel	500	RW
	low-pass filter time			speed limit is		у		
	parameter (unit: ms)			changed,				
				low-pass				
				filtering is				
				performed				
				on the speed				
				limit value,				
				and the filter				
				time is				
				determined				
				by P05.28.				
				The larger				
				the filter				
				time, the				
				slower the				
				speed limit				
				value				
				changes.				

5.4.4 Torque reaches output

The torque arrival function is used to judge whether the actual torque reaches the set interval. When the actual torque reaches the torque threshold, the drive can output the corresponding DO signal (OUTFn.29: torque reached

Actual torque: A;

Base value for torque arrival P05.31: B;

Valid value for torque arrival P05.32: C;

Invalid value for torque arrival P05.33: D;

where C and D are the biases based on B.

Therefore, when the torque arrival DO signal (OUTFn.29) changes from invalid to valid, the actual torque must satisfy:)

$$|A| \geqslant B+C$$

Otherwise, the torque arrival DO signal remains inactive.

Conversely, when the torque arrival DO signal changes from valid to invalid, the actual torque must meet:

$$|A| < B+D$$

Otherwise, the torque arrival DO signal remains valid.

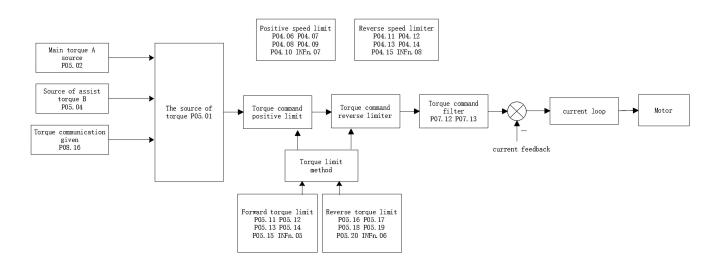
Related parameters are as follows.

Parameter No.		rameter scription		Set range	units	Function	Set method	Effective way	Defa ults	read and write method
P05.31	Base	value	for	0~300.0	%	Set the	anytime	Immediate	50.0	RW
	torque a	arrival				torque		ly		
						arrival				
						command				
						reference				
						value				
						(100%				

				,				
				corresponds				
				to one time				
				of rated				
				torque)				
P05.32	Valid value for	0~300.0	%	The set	anytime	Immediate	10.0	RW
	torque arrival			torque		ly		
				reaches the				
				effective				
				offset				
				threshold				
				(100%				
				corresponds				
				to 1 time				
				rated torque)				
P05.33	Invalid value for	0~300.0	%	(The set	anytime	Immediate	0.0	RW
	torque arrival			torque		ly		
				reaches the				
				invalid offset				
				threshold				
				(100%				
				corresponds				
				to one time				
				rated				
				torque))				

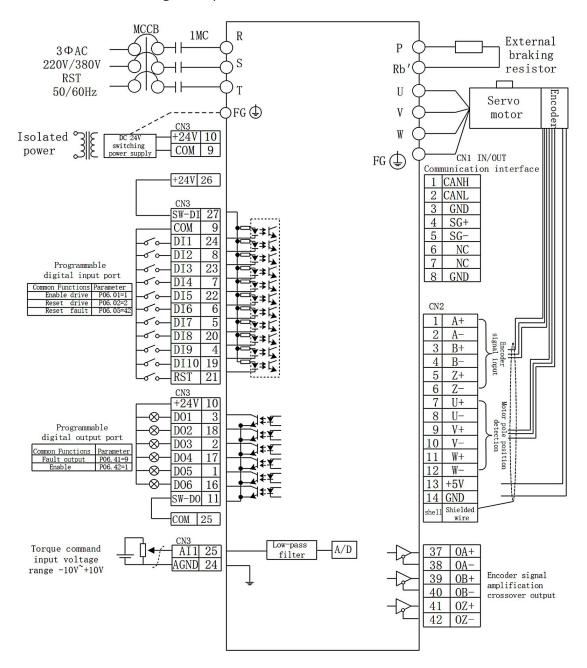
Related output function bits

Function bits	Bit description
OUTFn.29	Torque arrives; when it is valid, the absolute value of torque reaches the set value; when it is
	invalid, the absolute value of torque is less than the set value.


Note: When the torque arrival signal is valid or invalid, the actual torque setting value requirements are different, please refer to the above of this section for details.

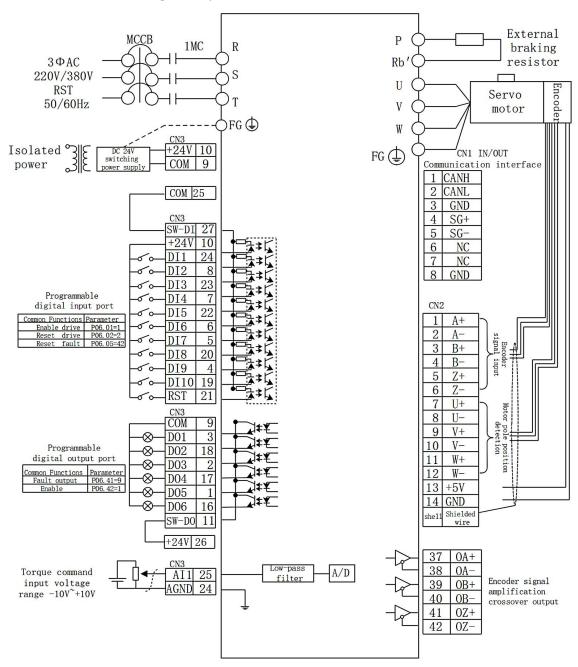
5.4.5 Small torque jitter suppression

When the given torque is small, the motor will vibrate due to the uneven distribution of the magnetic poles of the motor. It can be set to make the motor output a certain reverse torque to overcome the motor jitter, so that the motor speed output is uniform. Related parameters are as follows:


Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P05.35	Maximum output limit of torque that suppresses jitter	0~10.0	%	Limit the output of the anti-shake torque	anytime	Immediate ly	0	RW
P05.36	Percentage of gain that suppresses jitter	0~300.0	%	The speed of restraining the jitter	anytime	Immediate ly	100.0	RW
P05.37	time constant for detect Jitter speed	0-32767	ms	Jitter whose period is less than this time will be suppressed	anytime	Immediate ly	500	RW
P05.38	detected Jitter speed	-	ms	Displays the detected shaking speed	anytime	Immediate	-	RO
P05.39	Torque output that suppresses jitter	-	ms	Displays the output reverse torque that suppresses chattering	anytime	Immediate ly	-	RO

5.4.6 Internal block diagram of torque mode

5.4.7 Typical wiring diagram of torque mode

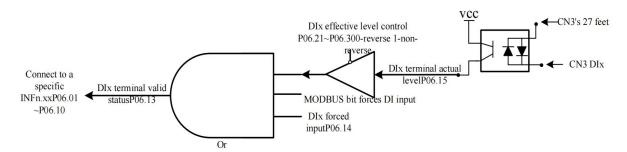

5.3.7.1 NPN wiring for DI/DO

MCCB: air switch 1MC: AC contactor

- 1. Indicates twisted pair shielded wire.
- 2. The DC24V power supply is prepared by the user. The DC24V switching power supply should be powered by an isolation transformer, and its ground terminal should be directly connected to the ground terminal of the driver.

5.3.7.2 PNP wiring for DI/DO

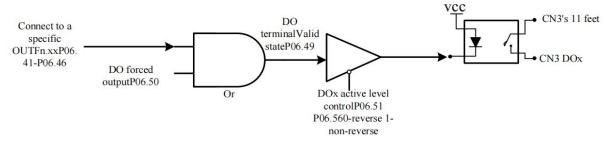
MCCB: air switch 1MC: AC contactor


- 1. Indicates twisted pair shielded wire.
- 2. The DC24V power supply is prepared by the user. The DC24V switching power supply should be powered by an isolation transformer, and its ground terminal should be directly connected to the ground terminal of the driver.

Chapter 6 Inputs and Outputs Function

6.1 Entity DI/DO function

The servo has 10 physical DIs, which are DI1~DI10. Each entity DI can be assigned an input function bit INFn.xx. The effective level of each entity DI can be set separately (P06.21-P06.30). Each entity DI can be forced to enter a specific level via P06.14, or a DI input can be forced via the Modbus bit.


The internal logic of the general servo DI is shown in the figure below.

(Note: SW-DI: Pin 27 of CN3 is short-circuited with +24V for NPN mode; short-circuit with COM is for PNP mode. For economical servo SW-DI internally directly connected to 24V, only NPN mode can be selected)

As can be seen from the above figure, to make the DIx terminal valid, you can modify the actual level of DIx, or set the MODBUS communication bit, or set the mandatory valid register P06.14. If it is input from an external terminal, a voltage difference of 24V needs to be input between the 27 pin of the servo CN3 terminal and the corresponding DIx pin.

The servo has 6 entity DOs, DO1~DO6 respectively. Each DO can be assigned an output function bit OUTFn.xx. The effective level of each entity DO can be set individually, or a DO bit can be output through the forced register of P06.50. The effective level output of DO finally drives an optocoupler. Once the optocoupler is turned on, DOx outputs the voltage of pin 11 of CN3 port.

Remarks: SW-DO: Pin 11 of CN3 is short-circuited with COM for NPN mode; short-circuited with +24V is for PNP mode. For economical servo SW-DO is directly connected to COM, only NPN mode can be selected

Among them, DI1 \sim DI8 are hardware low-speed DIs, and DI9 and DI10 are hardware high-speed DIs. The details are as follows:

Hard	ware low-speed DI description (DI1~DI8)
DI function valid logic state	notes
low level	High More than 3ms
	Low Effective
high level	High
	Low More than 3ms Effective
rising edge	High
	Low More than 3 ms
falling edge	High More than 3ms
	Low Effective
rising edge and falling edge	High Effective Effective
	Low More than 3ms
Hardv	vare high-speed DI description (DI9, DI10)
DI function valid logic state	notes
	High More than 0.25ms
DI function valid logic state	High More than 0.25ms Low Effective
DI function valid logic state	High More than 0.25ms
DI function valid logic state	High More than 0.25ms Low Effective High Low More than 0.25ms
DI function valid logic state low level high level	High More than 0.25ms Low Effective High
DI function valid logic state	High More than 0.25ms Low Effective High Low More than 0.25ms Effective High Low More than 0.25ms
DI function valid logic state low level high level	High More than 0.25ms Low Effective High Low More than 0.25ms Effective High Low
DI function valid logic state low level high level rising edge	High More than 0.25ms Low Effective High Low More than 0.25ms Effective High Low More than 0.25ms High More than 0.25ms Low Effective
DI function valid logic state low level high level rising edge	High More than 0.25ms Low Effective High Low More than 0.25ms Effective High Low More than 0.25ms High Low More than 0.25ms

DO1 and DO2 are set to output the A, B, Z signals of the motor encoder through P06.40. Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P06.01	DI1 function control	0~99	-	Set the DI	anytime	Immediatel	1	RW
	register			function		у		
				correspondin				
				g to the				
				hardware				
				DI1				
				terminal. For				
				specific				
				functions,				
				see the DI				
				function				
				table.				
P06.02	DI2 function control	0~99	-	-	anytime	Immediatel	42	RW
	register					У		
P06.03	DI3 function control	0~99	-	-	anytime	Immediatel	0	RW
	register					у		
P06.04	DI4 function control	0~99	-	-	anytime	Immediatel	0	RW
	register					У		
P06.05	DI5 function control	0~99	-	-	anytime	Immediatel	0	RW
	register					у		
P06.06	DI6 function control	0~99	-	-	anytime	Immediatel	0	RW
	register					У		
P06.07	DI7 function control	0~99	-	-	anytime	Immediatel	0	RW
	register					У		
P06.08	DI8 function control	0~99	-	-	anytime	Immediatel	0	RW
	register					У		
P06.09	DI9 function control	0~99	-	-	anytime	Immediatel	0	RW
	register					У		
P06.10	DI10 function	0~99	-	-	anytime	Immediatel	0	RW
	control register					У		
P06.13	DI terminal valid	-	-	Displayed in	anytime	-	-	RO
	state			decimal				
				format, after				
				conversion				
				to binary				
				format, it				
				contains 0-9				

					1			
				digits, the				
				low-order to				
				high-order				
				indicates the				
				status of				
				digital output				
				terminals				
				DI1~DI10,				
				0=OFF,				
				1=ON, the				
				0th bit				
				corresponds				
				to DI1, ···,				
				the first Bit 9				
				corresponds				
				to DI10. See				
				"4.6 Variable				
				Monitoring"				
				for details of				
				parameter				
				valid state				
				display.				
P06.14	DI forced input	0~1023	_	When the DI	anytime	Immediatel	0	RW
	-			forced input		у		
				is valid, set				
				the level				
				logic of the				
				DI function				
				through this				
				parameter.				
				Input in				
				decimal				
				(BCD)				
				format and				
				convert it				
				into binary				
				(Binary) to				
	Î.	I						
				be the				
I .								
				correspondin				
				correspondin g DIx input				
				correspondin				

				I	1	ı		
				CD)=000010				
				1010(Binary				
), it means				
				DI2, DI4 and				
				DI6				
				terminals are				
				ON.				
P06.15	DI terminal actual	-	-	Displayed in	anytime	-	-	RO
	level			decimal				
				format and				
				converted to				
				binary				
				format, it				
				contains 0-9				
				digits, and				
				the				
				low-order to				
				high-order				
				indicates the				
				status of				
				digital output terminals				
				DI1~DI10.				
				See "4.6				
				Variable				
				Monitoring"				
				for details of				
				parameter				
				valid state				
				display.				
P06.16	High-speed DI filter	1~32767	us	When the	anytime	Immediatel	10	RW
	configuration			high-speed		у		
				pulse input				
				terminal is in				
				the peak				
				interference,				
				you can filter				
				out the peak				
				interference				
				by setting				
				P06.16.				
				INFn.34 and				
				INFn.40 are				

VECTOR

high-speed DI signals, and their filtering time is determined by P06.16; other input signals are low-speed DI signals, and their filtering time is determined by P06.17. P06.17 Low-speed DI filter 1~32767 When there anytime Immediatel 1000 RW us configuration is spike y interference at the low-speed pulse input terminal, the spike interference can be suppressed by setting P06.17 to prevent the interference signal from entering the servo drive. P06.21 DI1 active level 0~1 Set the level anytime Immediatel 0 RW0-active low logic of the у hardware 1-active high DI1 terminal when the DI function selected by DI1 is valid. P06.22 DI2 active level 0~1 Immediatel 0 RW anytime

	0-active low					у		
	1-active high							
P06.23	DI3 active level	0~1	_	-	anytime	Immediatel	0	RW
	0-active low					y		
	1-active high							
P06.24	DI4 active level	0~1	-	-	anytime	Immediatel	0	RW
	0-active low					y		
	1-active high							
P06.25	DI5 active level	0~1	-	-	anytime	Immediatel	0	RW
	0-active low					y		
	1-active high							
P06.26	DI6 active level	0~1	-	-	anytime	Immediatel	0	RW
	0-active low					у		
	1-active high							
P06.27	DI7 active level	0~1	-	-	anytime	Immediatel	0	RW
	0-active low					у		
	1-active high							
P06.28	DI8 active level	0~1	-	-	anytime	Immediatel	0	RW
	0-active low					у		
	1-active high							
P06.29	DI9 active level	0~1	-	-	anytime	Immediatel	0	RW
	0-active low					у		
	1-active high							
P06.30	DI10 active level	0~1	-	-	anytime	Immediatel	0	RW
	0-active low					у		
	1-active high							
P06.40	DO1 and DO2	0~2	-	Set the	anytime	Immediatel	0	RW
	function			output		у		
	configuration			function of				
	registers			output				
	0- DO1, DO2			terminals				
	function output			DO1 and				
	configured with			DO2.				
	P06.41P06.42							
	Respectively							
	1- DO1, DO2 output							
	A, B pulse							
	respectively							
	2- DO1 outputs Z							
	point signal, DO2							
	functions output							
	with P06.42							

	configuration							
P06.41	DO1 function	0~99	-	Set the DO	anytime	Immediatel	9	RW
	control register			function		у		
				correspondin				
				g to the				
				hardware				
				DO1				
				terminal. For				
				specific				
				functions,				
				please refer				
				to the DO				
				function				
				table.				
P06.42	DO2 function	0~99	-	-	anytime	Immediatel	13	RW
	control register					у		
P06.43	DO3 function	0~99	-	-	anytime	Immediatel	0	RW
	control register					у		
	_							
P06.44	DO4 function	0~99	-	-	anytime	Immediatel	0	RW
	control register					у		
P06.45	DO5 function	0~99	-	-	anytime	Immediatel	0	RW
	control register					у		
P06.46	DO6 function	0~99	-	-	anytime	Immediatel	0	RW
	control register					у		
P06.49	DO terminal valid	-	-	Displayed in	anytime	-	-	RO
	state			decimal				
				format, after				
				conversion				
				to binary				
				format, it				
				contains 0-5				
				digits, the				
				low digits to				
				high digits				
				indicate the				
				status of				
				digital output				
				terminals				
				DO1~DO6				
				in turn,				
				0=OFF,				

							1	
				1=ON, the				
				0th bit				
				corresponds				
				to DO1,,				
				the first Bit 5				
				corresponds				
				to DO6. See				
				"4.6 Variable				
				Monitoring"				
				for details of				
				parameter				
				valid state				
				display.				
P06.50	DO force output	0~63	-	When the	anytime	Immediatel	0	RW
				DO forced		у		
				output is		-		
				valid, this				
				parameter is				
				used to set				
				whether the				
				DO function				
				is valid.				
				Input in				
				decimal				
				(BCD)				
				format and				
				convert it				
				into binary				
				(Binary) to				
				be the				
				correspondin				
				g DOx input				
				signal. For				
				example:				
				P06.50=42(B				
				CD)=101010				
				(Binary), it				
				means DO2,				
				DO4 and				
				DO4 and DO6 output				
				ON.				
P06.51	DO1 active level	0~1	_	Set the	anytime	Immediatel	0	RW
1 00.31	0-active low	0,-1	_	output level	anythic			17.44
	0-active tow		1	output ievei	1	У		1

	1- active high			logic of the				
				hardware				
				DO1				
				terminal				
				when the DO				
				function				
				selected by				
				DO1 is valid.				
P06.52	DO2 active level	0~1	-	-	anytime	Immediatel	0	RW
	0-active low					у		
	1- active high							
P06.53	DO3 active level	0~1	-	-	anytime	Immediatel	0	RW
	0-active low					у		
	1- active high							
P06.54	DO4 active level	0~1	-	-	anytime	Immediatel	0	RW
	0-active low					у		
	1- active high							
P06.55	DO5 active level	0~1	-	-	anytime	Immediatel	0	RW
	0-active low					у		
	1- active high							
P06.56	DO6 active level	0~1	-	-	anytime	Immediatel	0	RW
	0-active low					у		
	1- active high							

DI specific function INFn.xx configuration is shown in the following table, and its effective status can be monitored through P06.13.

DI function number	DI function	effective rules
0	none	-
1	Enable	Valid when the valid state is high
2	reset the drive	Effective state changes from low to high
3	Torque AB selector switch	Valid when the valid state is high
4	Torque reverse switch	Valid when the valid state is high
5	Forward torque limit selection	Valid when the valid state is high
6	Reverse torque limit selection	Valid when the valid state is high
7	Positive speed limit selection	Valid when the valid state is high
8	Reverse speed limit selection	Valid when the valid state is high
9	forward jog	Valid when the valid state is high
10	reverse jog	Valid when the valid state is high
11	Reverse speed reference	Valid when the valid state is high
12	Main speed AB selection	Valid when the valid state is high
13	speed stop input	Valid when the valid state is high

14	Download ARM Program Reset	Effective state changes from low to high
15	Clear the encoder position counter	Effective state changes from low to high
16	Zero position fixed in speed mode	Valid when the valid state is high
17	Multi-speed speed selection switch 0	Valid when the valid state is high
18	Multi-speed speed selection switch 1	Valid when the valid state is high
19	Multi-speed speed selection switch 2	Valid when the valid state is high
20	Multi-speed speed selection switch 3	Valid when the valid state is high
21	Position command prohibition	Valid when the valid state is high
22	Position command reverse	Valid when the valid state is high
23	Prohibition of pulse command	Valid when the valid state is high
24	Electronic gear ratio selector switch 1	Valid when the valid state is high
25	Position error clear	Depends on P03.21
26	Position mode origin return command	Effective state changes from low to high
		The rising edge of the valid state triggers th
27	A tri	start of the multi-segment position,
27	Multi-segment position trigger signal	Falling edge of valid state triggers stop
		multi-segment position
28	Multi-stage position position selector switch 0	Valid when the valid state is high
29	Multi-stage position position selector switch 1	Valid when the valid state is high
30	Multi-stage position position selector switch 2	Valid when the valid state is high
31	Multi-stage position position selector switch 3	Valid when the valid state is high
32	Position direction in multi-segment position mode	Valid when the valid state is high
34	Return to the origin signal input	Depends on homing mode
	XY pulse tracking and multi-segment position	Valid when the valid state is high
35	switching in position mode	
36	Control mode toggle switch 0	Valid when the valid state is high
37	Control mode toggle switch 1	Valid when the valid state is high
	Enable detection trigger interrupt fixed length signal	Valid when the valid state is high
38	INFn.40	
39	cancel the fixed length	Valid when the valid state is high
40	Trigger interrupts fixed-length input signal	Effective state changes from low to high
	The first set of the second set of gain selector	Valid when the valid state is high
41	switches	
42	reset fault	Valid when the valid state is high
43	Position Mode Positive Limit Switch	Valid when the valid state is high
44	Position Mode Reverse Limit Switch	Valid when the valid state is high
	Open and closed loop switching in full closed loop	Valid when the valid state is high
45	mode	
46	FPGA download program reset	Effective state changes from low to high
47	Tension compensation direction	Valid when the valid state is high
48	Tension Tracking Direction	Valid when the valid state is high
49	Forced to limit at maximum compensation speed	Valid when the valid state is high

50	Prohibit roll diameter calculation	Valid when the valid state is high
51	Change roll	Valid when the valid state is high
52	Initial roll diameter switch	Valid when the valid state is high
53	Clear feed length	Valid when the valid state is high
54	Force fast tightening	Valid when the valid state is high
	Tension compensation is prohibited in closed-loop	Valid when the valid state is high
55	speed mode	
56	Electronic gear ratio selector switch 2	Valid when the valid state is high
57	Motor overheating	Valid when the valid state is high
58	Emergency stop input	Valid when the valid state is high
59	Internal flip-flop reset	Effective state changes from low to high
60	Internal trigger set	Effective state changes from low to high
61	Internal counter counts pulses	Effective state changes from low to high
62	Internal counter cleared	Valid when the valid state is high
63	Speed mode UPDOWN mode UP signal	Valid when the valid state is high
64	Speed mode UPDOWN mode DOWN signal	Valid when the valid state is high
65	Speed mode UPDOWN mode hold signal	Valid when the valid state is high
	Back to the previous phase (Tension Type: Velocity	Valid when the valid state is high
66	Superposition Enabled)	
67	Correct the zero drift of all AI	Valid when the valid state is high to low
	Go to the specified phase (tension type: closed-loop	Valid when the valid state is high
68	speed/torque mode switching)	
	Positive jog fixed position (tension type: motor	Effective state changes from low to high
69	rotation direction in closed-loop speed mode)	
	Reverse jog fixed position (tension type: motor	Effective state changes from low to high
70	rotation direction in closed-loop torque mode)	
71	Rewinding and unwinding control	Valid when the valid state is high
72	Trigger correction current sensor	Effective state changes from low to high
73	Trigger learning phase	Effective state changes from low to high
74	Trigger back to absolute zero	Effective state changes from low to high
75	Activate STO	Valid when the valid state is high

The specific functions of DO OUTFn.xx are shown in the following table.

DO function	
number	DO function
0	none
1	Drive is enabled
2	Speed arrives
3	slowing down
4	speeding up
5	zero speed
6	overspeed

7	forward rotation
8	Reverse rotation
9	fault output
10	In the forward speed limit in the torque mode
11	Negative speed limit in torque mode
12	Speed limit in torque mode
13	Positioning completion output
14	Positioning close to the output
15	return home completed output
16	Position error too large output
17	Interrupt fixed length output
18	Software limit output
19	feeding output
20	feed output
21	Roll diameter calculation is valid
22	The roll diameter reaches the output
23	length arrives at output
24	Holding brake output
25	Input command is valid
26	Often OFF
27	Always ON
28	Torque limit output
29	Torque arrival
30	Internal trigger state
31	Internal counter count arrives
32	Consistent speed
33	Pulse position command is zero output
34	Roll diameter reaches 2 outputs
35	Speed command is 0 output
	The speed command is zero and the speed feedback is 0
36	output

6.2 Virtual DI/DO function

The servo drive has 16 general virtual DIs (VDIs), and each virtual DI has two types of level, including writing 1 is always valid and rising edge valid. The function of each virtual DI (P12.01 to P12.16) can be configured individually. Simulate the level of VDI by writing a value to the virtual DI input register (P12.20).

The servo driver has 16 general-purpose virtual DOs (VDOs), and each virtual DO has

two level types, one is to output 1 when it is valid, and the other is to output 0 when it is valid. The function of each virtual DO (P12.41-P12.56) can be configured individually. The output level of DO can be displayed in P12.60.

The servo drive also has 2 sets of dedicated input and output: VDI20 and VDO20, VDI21 and VDO21. The two VDI/VDOs are directly connected internally.

Related parameters are as follows.

Parameter No. Parameter No. Description P12.01 VDII function configuration register P12.02 VDI2 function configuration register P12.03 VDI3 function configuration register P12.04 VDI4 function configuration register P12.05 VDI5 function configuration register P12.06 VDI6 function configuration register P12.07 VDI7 function configuration register P12.08 VDI6 function configuration register P12.09 VDI6 function configuration register P12.00 VDI6 function configuration register P12.01 VDI6 function configuration register P12.02 VDI6 function configuration register P12.03 VDI6 function configuration register P12.04 VDI6 function configuration register P12.05 VDI6 function configuration register P12.06 VDI6 function configuration register P12.07 VDI6 function configuration register P12.08 VDI6 function configuration register P12.09 VDI6 function configuration register P12.00 VDI6 function configuration register P12.01 VDI7 function configuration register P12.02 VDI7 function configuration register P12.03 VDI7 function configuration register P12.04 VD16 function configuration register P12.05 VD16 function configuration register P12.06 VD16 function configuration register P12.07 VD17 function configuration register P12.08 VD18 function configuration register P12.09 VD18 function configuration register P12.00 VD17 function configuration register P12.01 VD17 function configuration register P12.02 VD18 function configuration register P12.03 VD18 function configuration register P12.04 VD18 function configuration register P12.05 VD18 function configuration register P12.07 VD17 function configuration register P12.08 VD18 function configuration register P12.09 VD18 function configuration register P12.01 VD17 function configuration register P12.02 VD18 function configuration register P12.03 VD18 function configuration register P12.04 VD18 function configuration register P12.05 VD18 function configuration register P12.06 VD18 function configuration register P12.07 VD17 function co	l	KC	lated parameters are	as follows.						
configuration register P12.02 VD12 function configuration register P12.03 VD13 function configuration register P12.04 VD14 function configuration register P12.05 VD15 function configuration register P12.06 VD16 function configuration register P12.07 VD17 function configuration register P12.08 VD16 function configuration register P12.09 VD16 function configuration register P12.00 VD17 function configuration register P12.01 VD17 function configuration register P12.02 VD17 function configuration register P12.03 VD17 function configuration register P12.04 VD17 function configuration register P12.05 VD17 function configuration register P12.06 VD16 function configuration register P12.07 VD17 function configuration register P12.08 VD17 function configuration register P12.09 VD17 function configuration register					units	Function			Defaults	and write
configuration register P12.03 VDI3 function 0~99 anytime Immediate 0 RW configuration register P12.04 VDI4 function 0~99 anytime Immediate 0 RW configuration register P12.05 VDI5 function 0~99 anytime Immediate 0 RW configuration register P12.06 VDI6 function 0~99 anytime Immediate 0 RW configuration register P12.07 VDI7 function 0~99 anytime Immediate 0 RW configuration register P12.07 VDI7 function 0~99 anytime Immediate 0 RW configuration register		P12.01	configuration	0~99	_	function correspondin g to VDI1 (virtual input terminal 1). The specific functions of the VDI port are the same as those of the physical	anytime		0	RW
configuration register P12.04 VDI4 function configuration register P12.05 VDI5 function configuration register P12.06 VDI6 function configuration register P12.07 VDI7 function configuration register P12.07 VDI7 function configuration register P12.08 VDI6 function configuration register P12.09 Lample Immediate configuration ly		P12.02	configuration	0~99	-	-	anytime		0	RW
configuration register P12.05 VDI5 function 0~99 anytime Immediate 0 RW configuration register P12.06 VDI6 function 0~99 anytime ly configuration register P12.07 VDI7 function 0~99 anytime Immediate 0 RW configuration register P12.07 VDI7 function 0~99 anytime Immediate 0 RW configuration register		P12.03	configuration	0~99	-	-	anytime		0	RW
configuration register P12.06 VDI6 function 0~99 anytime Immediate 0 RW configuration register P12.07 VDI7 function 0~99 anytime Immediate 0 RW configuration register		P12.04	configuration	0~99	-	-	anytime		0	RW
configuration register P12.07 VDI7 function 0~99 anytime Immediate 0 RW configuration register		P12.05	configuration	0~99	-	-	anytime		0	RW
configuration ly register		P12.06	configuration	0~99	-	-	anytime		0	RW
P12.08 VDI8 function 0~99 anytime Immediate 0 RW		P12.07	configuration	0~99	-	-	anytime		0	RW
		P12.08	VDI8 function	0~99	-	_	anytime	Immediate	0	RW

	configuration register					ly		
P12.09	VDI9 function configuration register	0~99	-	-	anytime	Immediate ly	0	RW
P12.10	VDI10 function configuration register	0~99	-	-	anytime	Immediate ly	0	RW
P12.11	VDI1 function configuration register	0~99	-	-	anytime	Immediate ly	0	RW
P12.12	VDI12 function configuration register	0~99	-	-	anytime	Immediate ly	0	RW
P12.13	VDI13 function configuration register	0~99	-	-	anytime	Immediate ly	0	RW
P12.14	VDI14 function configuration register	0~99	-	-	anytime	Immediate ly	0	RW
P12.15	VDI15 function configuration register	0~99	-	-	anytime	Immediate ly	0	RW
P12.16	VDI16 function configuration register	0~99	-	-	anytime	Immediate ly	0	RW
P12.17	VDI20 function configuration register	0~99	-	-	anytime	Immediate ly	0	RW
P12.18	VDI21 function configuration register	0~99	-	-	anytime	Immediate ly	0	RW
P12.19	Monitoring values of virtual DI20 and virtual DI2	-	-	Read the virtual value of VDI20 and VDI21 terminals.	-	-	-	RO
P12.20	Virtual DI1-Virtual DI16 input value setting register	0~65535	-	Set the input value of VDI1-16.	anytime	Immediate ly	0	RW
P12.21	VDI1 level type 0-Write 1 is always	0~1	-	The setting makes the DI	anytime	Immediate ly	0	RW

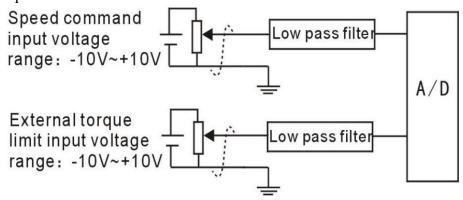
	1:1							
	valid			function				
	1- rising edge is			selected by				
	valid			VDI1 valid,				
				and the input				
				level logic of				
				the VDI1				
				terminal.				
P12.22	VDI2 level type	0~1	-	-	anytime	Immediate	0	RW
	0-Write 1 is always					ly		
	valid							
	1- rising edge is							
	valid							
P12.23	VDI3 level type	0~1	-	-	anytime	Immediate	0	RW
	0- Write 1 is always					ly		
	valid							
	1- Rising edge valid							
P12.24	VDI4 level type	0~1	-	-	anytime	Immediate	0	RW
	0- Write 1 is always					ly		
	valid							
	1- Rising edge valid							
P12.25	VDI5 level type	0~1	-	-	anytime	Immediate	0	RW
	0- Write 1 is always					ly		
	valid							
	1- Rising edge valid							
P12.26	VDI6 level type	0~1	-	-	anytime	Immediate	0	RW
	0- Write 1 is always					ly		
	valid							
	1- Rising edge valid							
P12.27	VDI7 level type	0~1	_	_	anytime	Immediate	0	RW
	0- Write 1 is always					ly		
	valid							
	1- Rising edge valid							
P12.28	VDI8 level type	0~1	_	_	anytime	Immediate	0	RW
112.20	0- Write 1 is always					ly		
	valid							
	1- Rising edge valid							
P12.29	VDI9 level type	0~1	_	_	anytime	Immediate	0	RW
- 12.27	0- Write 1 is always				,	ly		
	valid							
	1- Rising edge valid							
P12.30	VDI10 level type	0~1	_	_	anytime	Immediate	0	RW
112.30	0- Write 1 is always	0,-1	_	_	anythine	ly		17.44
	0- write i is always				1	1 y		

			1	1		I		
	valid							
	1- Rising edge valid							
P12.31	VDI11 level type	0~1	-	-	anytime	Immediate	0	RW
	0- Write 1 is always					ly		
	valid							
	1- Rising edge valid							
P12.32	VDI12 level type	0~1	-	-	anytime	Immediate	0	RW
	0- Write 1 is always					ly		
	valid							
	1- Rising edge valid							
P12.33	VDI13 level type	0~1	-	-	anytime	Immediate	0	RW
	0- Write 1 is always					ly		
	valid							
	1- Rising edge valid							
P12.34	VDI14 level type	0~1	-	-	anytime	Immediate	0	RW
	0- Write 1 is always					ly		
	valid							
	1- Rising edge valid							
P12.35	level type	0~1	-	-	anytime	Immediate	0	RW
	0- Write 1 is always					ly		
	valid							
	1- Rising edge valid							
P12.36	VDI16 level type	0~1	-	-	anytime	Immediate	0	RW
	0- Write 1 is always					ly		
	valid							
	1- Rising edge valid							
P12.37	VDI20 level type	0~1	-	-	anytime	Immediate	0	RW
	0- Write 1 is always					ly		
	valid							
	1- Rising edge valid							
P12.38	VDI21 level type	0~1	-	-	anytime	Immediate	0	RW
	0- Write 1 is always					ly		
	valid							
	1- Rising edge valid							
P12.41	VDO1 configuration	0~99	-	Set the DO	anytime	Immediate	0	RW
	register			function		ly		
				correspondin				
				g to VDO1.				
				The specific				
				functions of				
				VDO are the				
				same as the				

			<u> </u>					
				functions of				
			-	entity DO.				
P12.42	VDO2 configuration	0~99	-	-	anytime	Immediate	0	RW
	register		-			ly		
P12.43	VDO3 configuration	0~99	-	-	anytime	Immediate	0	RW
	register					ly		
P12.44	VDO4 configuration	0~99	-	-	anytime	Immediate	0	RW
	register					ly		
P12.45	VDO5 configuration	0~99	-	-	anytime	Immediate	0	RW
	register					ly		
P12.46	VDO6 configuration	0~99	-	-	anytime	Immediate	0	RW
	register					ly		
P12.47	VDO7 configuration	0~99	-	-	anytime	Immediate	0	RW
	register					ly		
P12.48	VDO8 configuration	0~99	-	-	anytime	Immediate	0	RW
	register					ly		
P12.49	VDO9 configuration	0~99	-	-	anytime	Immediate	0	RW
	register					ly		
P12.50	VDO10	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.51	VDO11	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.52	VDO12	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.53	VDO13	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.54	VDO14	0~99	_	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.55	VDO15	0~99	_	-	anytime	Immediate	0	RW
	configuration	-				ly		
	register							
P12.56	VDO16	0~99	_	-	anytime	Immediate	0	RW
	configuration	-				ly		
	register							
P12.57	VDO20	0~99	-	_	anytime	Immediate	0	RW
	configuration					ly	-	
	register							
L	1 0 -		1	I.	1	1		1

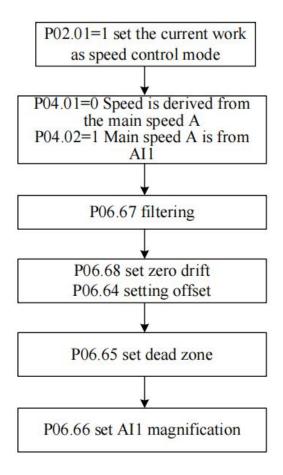
P12.58	VDO21 configuration	0~99	-	-	anytime	Immediate ly	0	RW
	register							
P12.59	Output level of	-	-	Read the	-	-	-	RO
	virtual			virtual level				
	DO20 D021			of the				
				VDO20 and				
				VDO21				
				terminals.				
P12.60	Virtual DO1-DO16	-	-	Read the	-	-	-	RO
	output level			virtual level				
				of the VDO1				
				- VDO16				
				terminals.				
P12.61	Active level of	0~1	-	When the	anytime	Immediate	0	RW
	virtual			DO function		ly		
	DO1			selected by				
	0-Output 1 when			VDO1 is				
	valid			valid, the				
	1-Output 0 when			output level				
	valid			logic of the				
				VDO1				
				terminal is				
				set.				
P12.62	Active level of	0~1	-	-	anytime	Immediate	0	RW
	virtual					ly		
	DO2							
	0-Output 1 when							
	valid							
	1-Output 0 when							
	valid							
P12.63	Active level of	0~1	-	-	anytime	Immediate	0	RW
	virtual					ly		
	DO3							
	0-Output 1 when							
	valid							
	1-Output 0 when							
D12.64	valid	0 1			4	T 1' /	0	DIII
P12.64	Active level of	0~1	-	-	anytime	Immediate	0	RW
	virtual					ly		
	DO4							
	0-Output 1 when							
	valid							

			1		1			
	1-Output 0 when							
	valid							
P12.65	Active level of	0~1	-	-	anytime	Immediate	0	RW
	virtual					ly		
	DO5							
	0-Output 1 when							
	valid							
	1-Output 0 when							
	valid							
D12.66		0~1				Immediate	0	DW
P12.66		0~1	-	-	anytime		0	RW
	virtual					ly		
	DO6							
	0-Output 1 when							
	valid							
	1-Output 0 when							
	valid							
P12.67	Active level of	0~1	-	-	anytime	Immediate	0	RW
	virtual					ly		
	DO7							
	0-Output 1 when							
	valid							
	1-Output 0 when							
	valid							
P12.68	Active level of	0~1	-	-	anytime	Immediate	0	
	virtual					ly		
	DO8							
	0-Output 1 when							
	valid							
	1-Output 0 when							
	valid							
P12.69	Active level of	0~1	-	-	anytime	Immediate	0	RW
	virtual	V 1				ly		
	DO9					-5		
	0-Output 1 when							
	valid							
	1-Output 0 when							
	valid							
P12.70	Active level of	0~1	_	_	anytime	Immediate	0	RW
114./0	virtual	U~1	_	_	anythine	ly		17.44
	DO10					1 y		
	0-Output 1 when							
	valid							
	1-Output 0 when							


	valid							
P12.71	Active level of virtual DO11 0-Output 1 when valid 1-Output 0 when valid	0~1	-	-	anytime	Immediate ly	0	RW
P12.72	Active level of virtual DO12 0-Output 1 when valid 1-Output 0 when valid	0~1	-	-	anytime	Immediate ly	0	RW
P12.73	Active level of virtual DO13 0-Output 1 when valid 1-Output 0 when valid	0~1	-	-	anytime	Immediate ly	0	RW
P12.74	Active level of virtual DO14 0-Output 1 when valid 1-Output 0 when valid	0~1	-	-	anytime	Immediate ly	0	RW
P12.75	Active level of virtual DO15 0-Output 1 when valid 1-Output 0 when valid	0~1	-	-	anytime	Immediate ly	0	RW
P12.76	Active level of virtual DO16 0-Output 1 when valid 1-Output 0 when valid	0~1	-	-	anytime	Immediate ly	0	RW

P12.77	Active level of	0~1	-	-	anytime	Immediate	0	RW
	virtual					ly		
	DO20							
	0-Output 1 when							
	valid							
	1-Output 0 when							
	valid							
P12.78	Active level of	0~1	-	-	anytime	Immediate	0	RW
	virtual					ly		
	DO21							
	0-Output 1 when							
	valid							
	1-Output 0 when							
	valid							
P12.79	Whether the virtual	0~1	-	Set whether	anytime	Immediate	1	RW
	DI1-DI16 input			the		ly		
	value register			VDI1-VDI1				
	P12.20 is cleared			6 input value				
	when powered on			register				
	0 - no zero			P12.20 is				
	1- clear			cleared after				
				power-on.				

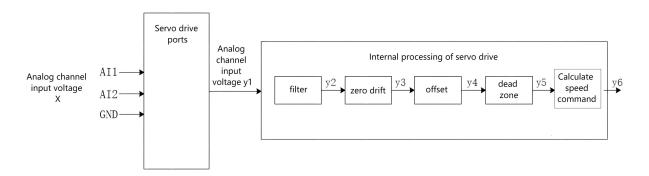
6.3 Analog input and analog output AI/AO function

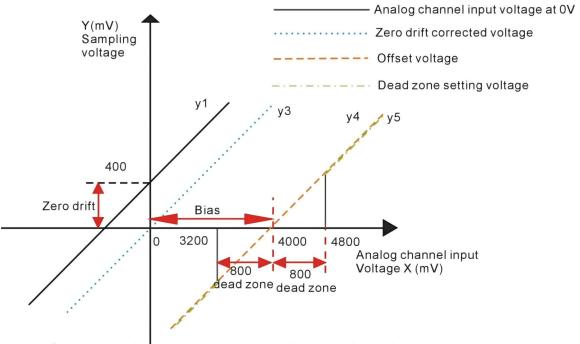

6.3.1 Analog input AI

The servo drive has 2 AI terminals, and the input range of AI1-AI2 is ± 10 V input. Analog input circuit:

Operation method and steps:

Take AI1 as an example to explain the analog voltage setting speed command method.


Noun explanation:


Zero drift: refers to the value of the servo drive sampled voltage value relative to GND when the analog channel input voltage is zero.

Offset: Refers to the input voltage value of the analog channel when the sampling voltage is zero after zero drift correction.

Dead zone: refers to the input voltage range of the analog channel when the sampling voltage is zero.

The unprocessed analog channel output voltage is shown in Figure y1. After being processed internally by the servo driver, the speed command y6 is finally obtained.

Servo driver AI processing corresponding sampling voltage example

• Filtering:

The servo driver provides analog channel filtering. By setting the filter time constants P06.67, P06.72, and P06.77, it can prevent the motor command fluctuation caused by the unstable analog input voltage, and can also reduce the motor fault caused by the interference signal. The filtering function has no elimination or suppression of zero drift and dead zone.

Zero drift correction

When the actual input voltage is corrected to 0V, the voltage P06.61 collected by the analog channel AI1 deviates from the value of 0V.

In the figure, the output voltage of the analog channel without the internal processing of the driver is shown as y1. Taking the filtering time constant P06.67= 0.00ms as an example, the sampling voltage y2 after filtering is consistent with y1.

It can be seen that when the actual input voltage x=0, the collected voltage P06.61=y1=400mV, this 400mV is called zero drift.

After zero drift correction, the sampling voltage is shown as y3. y3=y1-400.0

Offset Correction:

When the sampling voltage is set to 0, the corresponding actual input voltage value.

As shown in the figure, when the preset sampling voltage y4=0, the corresponding actual input voltage x=4000mV, this 4000mV is called offset. Set P06.64=4000.

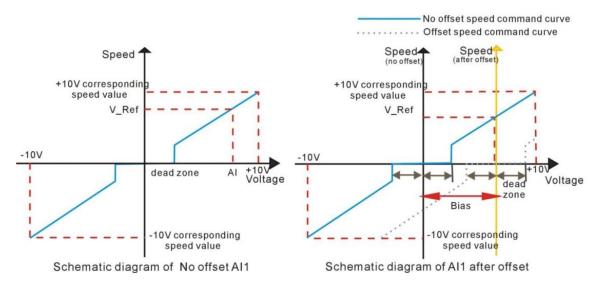
• Dead zone settings:

Limits the valid input voltage range when the sampling voltage of the driver is not 0.

After the offset setting is completed, when the input voltage x is within 3200mV and 4800mV, the sampling voltage value is 0, and this 800mV is called the dead zone. Set P06.65=800.0, after setting the dead zone, the sampling voltage is shown as y5.

$$y_5 = \begin{cases} 0.3200 \le x \le 4800 \\ y_4,4800 \le x \le 10000 \text{ or } -10000 \le x \le 3200 \end{cases}$$

• Calculate the percentage of analog commands


After the zero drift, offset and dead zone settings are completed, divide by 10000mV, and then multiply by the magnification percentage to obtain the final analog command percentage.

$$y_6 = \frac{y_5}{10000} \times (P06.66)\%$$

Calculate speed command y6 or torque command

Speed command (rpm) = Rated speed (rpm) \times Analog command percentage Torque command percentage = Analog command percentage

For example, when there is no offset, it is shown on the left of the following figure, and with an offset, it is shown on the right of the following figure. After completing the correct settings, you can view the AI1 sampling voltage value and the speed command value corresponding to the analog input in real time through the oscilloscope channel.

The relationship between the final speed command value percentage y6 and the input voltage x:

$$y6 = \begin{cases} 0, B - C \le X \le B + C \\ \frac{(x - B)}{10000} \times (P06.66 \text{ or } P06.67 \text{ or } P06.77)\%, B + C \le X \le 10000, or -10000 \le x \le B - C \end{cases}$$

Among them: B: bias; C: dead zone.

To sum up, assuming that the AI1 filter time constant is 0, the AI1 analog command calculation process is as follows:

(1) Eliminate zero drift and offset

b1 = (AI1 input voltage value P06.61) - (AI1 zero drift P06.68) - (AI1 bias P06.64)

(2) join dead zone

$$b2 = \begin{cases} 0, & |b1| < \text{dead zone P06.65} \\ b1, & |b1| > \text{dead zone P06.65} \end{cases}$$

(3) Calculate the percentage of analog instructions

All analog command percentage P06.91

$$= \frac{b2}{10000} \times (AI1 \text{ magnification P06.66})\%$$

(4) Calculate the speed command or torque command

(5)

Speed command (rpm) = AI1 analog command percentage P06.91 × Rated speed P00.02 Torque command% = AI1 analog command percentage P06.91

The AI correction method is as follows: write 1 to P06.79 to trigger the correction of AI1 zero drift; write 2 to P06.79 to trigger AI2 zero drift correction; write 3 to P06.79 to trigger AI3 zero drift correction; to P06.79 Write 4 to trigger correction of AI1, AI2, AI3 zero drift. Or trigger INFn67 through DI, and perform zero drift correction on AI1, AI2, AI3 at the same time. (Note: AI3 is not supported on VC310 hardware)

AI related parameters are as follows

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P06.61	AI1 input voltage	-	mV	Display AI1	-	-	-	RO
				input voltage				
P06.62	AI2 input voltage	-	mV		-	-	-	RO
P06.63	AI1 input voltage	-	mV	-	-	-	-	RO
P06.64	AI1 bias	-10000~10	mV	Set the actual	anytime	Immediately	0	RW
		000		input voltage				
				of AI1 when				
				the driver				
				sampling				
				voltage value				
				after zero				
				drift				
				correction is				
				0.				
P06.65	AI1 dead zone	0~5000	mV	Set the AI1	anytime	Immediately	0	RW
				input voltage				
				range when				
				the sampling				
				voltage value				
				of the driver				
				is 0.				
P06.66	AI1 magnification	0~1000.0	%	Set the AI1	anytime	Immediately	100.0	RW
				magnification				

P06.67	AI1 low pass filter	0~32767	ms	Set the filter	anytime	Immediately	2	RW
1 00.07	time constant	0~32707	1115	time constant	anythic	Ininiculately	2	IXW
	time constant			of the				
				software for				
				AI1 input				
				_				
				voltage				
D07.70	AT1 1:0	22767 22	***	signal.		T 11 . 1	0	DIV
P06.68	AI1 zero drift	-32767~32	mV	Zero drift:	anytime	Immediately	0	RW
		767		When the				
				input voltage				
				of the analog				
				channel is 0,				
				the sampling				
				voltage value				
				of the servo				
				driver is				
				relative to the				
				value of				
				GND.				
P06.69	AI2 bias	-10000~10	mV	-	anytime	Immediately	0	RW
		000						
P06.70	AI2 dead zone	0~5000	mV	-	anytime	Immediately	0	RW
P06.71	AI2 magnification	0~1000.0	%	-	anytime	Immediately	100.0	RW
P06.72	AI2 low pass filter	0~32767	ms	-	anytime	Immediately	2	RW
	time constant							
P06.73	AI2 zero drift	-10000~10	mV	-	anytime	Immediately	0	RW
		000						
P06.79	Automatic zero	0-7		-	anytime	Immediately	0	RW
	drift correction							
	Write 1 trigger to							
	correct AI1 zero							
	drift;							
	Write 2 trigger							
	correction AI2							
	zero drift;							
	Write 3 trigger							
	correction AI3							
	zero drift;							
	Write 4 trigger							
	correction AI1-AI3							
	zero drift;							
	2010 01111,							

	Write 5 trigger							
	correction current							
	sensor;							
	Write 6 to clear							
	the current							
	sensor zero drift							
	value;							
P06.91	AI1 analog command	-3276.7~3	%	display	-	-	-	RO
	percentage	276.7						
P06.92	AI2 analog command	-3276.7~3	%	display	-	-	-	RO
	percentage	276.7						

Related input function bits.

Function bits	Bit description
INFn.67	Valid to invalid transition, trigger correction of AI1, AI2 zero drift

6.3.2 Analog output AO

The VC310 servo driver has an AO output with an output range of \pm 10V. By configuring P06.84 and P06.85, AO can output a specific value.

Actual port output voltage = The corresponding variable is converted to the value of the voltage \times AOx magnification - AOx Bias

Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P06.80	AO1 offset	-10000~10	mV	When the	anytime	Immediately	0	RW
		000		theoretical				
				output				
				voltage is set				
				to 0V, after				
				biasing, the				
				actual output				
				voltage of				
				AO1.				
P06.81	AO1 magnification	-1000.0~1	%	Set the	anytime	Immediately	100	RW
		0.000		theoretical				
				output				
				voltage to 1V,				
				after				
				amplification,				

RW
RW
RW
RW
RW

<u>VECTOR</u>

VC310 series servo driver instruction manual

0.1% rated torque				
11-Current rms value				
10V corresponds to				
the rated current of				
the driver				
12-RMS current,				
10V corresponds to				
the rated current of				
the motor				
13-The absolute				
value of the motor				
display speed, 10V				
corresponds to the				
rated speed				
14-The absolute				
value of the real-time				
speed of the motor,				
1mV corresponds to				
1rpm				

Chapter 7 Auxiliary Functions

7.1 Fault protection

7.1.1 Fault Downtime

The failure of the servo drive is divided into three categories.

Class I is a serious fault. Once such a fault is reported, the motor power must be cut off immediately and the motor is free to stop. The fault code range for class I is Er.100-Er.199.

Class II is a general fault. When reporting such a fault, customize can report the running action of the motor after the fault according to parameter P02.10. The fault code range for a Type II fault is Er.200-Er.599.

Class III is not a serious fault. When reporting such a fault, customize can report the running action of the motor after the fault according to parameter P02.11. The fault code range for Class III faults is Er.600-Er.999.

When the hardware/software travel limit occurs, the servo over travel fault stop mode can be set separately by P02.12.

There are five types of downtime. The first type is free stop; the second type is rapid deceleration stop, the drive is disconnected after stop, the motor is powered off; the third is slow deceleration stop, disconnected after parking is enabled, the motor is powered off; the fourth is Quickly decelerate to stop, keep enabling after parking, users need to disconnect the enable signal to disable; the fifth is slow deceleration stop, keep enabled after parking, users need to disconnect the enable signal to disable. Free parking means that the drive is broken and the motor is free to stop by frictional resistance. Deceleration stop means that the servo drive drives the motor to decelerate. In this process, the motor is kept energized. The deceleration time for rapid deceleration stop is set by P02.16. The deceleration time for slow deceleration stop is set by P02.17. The deceleration time refers to the time from the rated speed to the zero speed. The actual deceleration time is determined by the speed at the time of the fault and the set deceleration time.

Actual deceleration time = set deceleration time $\times \frac{\text{failure speed}}{\text{Rated speed}}$

Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P02.10	Servo type 2 failure stop mode selection 0-break enable free parking	0~5	-	Set the deceleration method of the servo motor	anytime	Immediately	0	RW

	1-Fast deceleration			from rotation				
	and stop after the			to stop and				
	parking is enabled			the motor				
	2-Slow deceleration			state after				
	stop and enable			stop when the				
	3-Fast deceleration			servo class II				
	stop and keep enabled			fault occurs.				
	4-Slow deceleration							
	stop and keep enabled							
	5-Braking according							
	to the current set by							
	P02.18							
P02.11	Servo three types of	0~5	-	Set the	anytime	Immediately	0	RW
	failure mode selection			deceleration				
	0- break enable free			method of the				
	parking			servo motor				
	1- Fast deceleration			from rotation				
	and stop after the			to stop and				
	parking is enabled			the motor				
	2- Slow deceleration			state after the				
	stop and enable			stop when the				
	3-Fast deceleration			servo has a				
	stop and keep enabled			type III fault.				
	4-Slow deceleration							
	stop and keep enabled							
	5-Braking according							
	to the current set by							
	P02.18							
P02.12	Over travel stop mode	0~5	-	Set the	anytime	Immediately	0	RW
	selection			deceleration				
	0- break enable free			method of the				
	parking			servo motor				
	1- Fast deceleration			from rotation				
	and stop after the			to stop and				
	parking is enabled			the motor				
	2- Slow deceleration			state after				
	stop and enable			stop when				
	3- Fast deceleration			over travel				
	stop and keep enabled			occurs during				
	4- Slow deceleration			the servo				
	stop and keep enabled			motor				
	5-Braking according			running.				
	to the current set by							

	P02.18							
P02.16	Fast stop time	0~65535	ms	Set the	anytime	Immediately	500	RW
				deceleration				
				time when the				
				servo is				
				stopped				
				quickly.				
P02.17	Slow parking time	0~65535	ms	Set the	anytime	Immediately	1000	RW
				deceleration				
				time when the				
				servo slowly				
				stops.				

7.1.2 All faults

Servo supports the following failures.

fault code	Fault description
Er.100	Software overcurrent, when the current percentage P09.31 detected by the software is greater
	than the value set by P10.01, a software overcurrent fault will be reported, and the fault can be
	shielded by BIT1 of P10.33.
Er.101	hardware overcurrent
Er.102	Overvoltage,
	For 220V driver, when the bus voltage P01.08 is greater than 420V, it will report overvoltage.
	For 380V driver, when the bus voltage P01.08 is greater than 750V, it will report overvoltage.
Er.103	Undervoltage, when the bus voltage P01.08 is less than the rated voltage P01.07*1.414*0.7, it
	will report undervoltage.
Er.104 or Er.004	The current sensor is faulty. When the power is turned on for the first time, before the relay is
	closed, the detected current is not 0, and this fault is reported.
Er.105 or Er.005	If the encoder fails and the encoder is not connected, the fault is reported.
Er.106 or Er.006	The EEPROM verify fault, and the fault is reported when the value written to the EEPROM
	and the value of the read EEPROM are inconsistent.
Er.107	Phase sampling fault, when the phase obtained through the HALL switch and the phase
	obtained through the encoder are too different, this fault is reported.
Er.108 or Er.008	When the FPGA and ARM communication are faulty, the fault is reported when the values
	written and read by the ARM are inconsistent.
Er.109	If the current changes greatly, the fault will be reported when the difference between the two
	sampled currents is 50%.
Er.110	Magnetic encoder failure
Er.111	Current phase sequence learning failure
Er.112	The output is out of phase.
Er.113	Did not scan to Z point during self-learning

Er.114	Z point offset not found
Er.115	Hall code value learning error
Er.116	Great change in rotational speed
Er.117	The drive is overheated, when it is detected that the drive temperature P01.10 is greater than
	the drive overheating threshold P10.06, the drive over temperature fault will be reported.
Er.118	When powered on, the wire-saving encoder does not feedback hall value
Er.119	Motor encoder type does not match
Er.120	Software is not authorized
Er.121	Phase loss at RST input
Er.122 or Er.022	Use timeout
Er.130	STO (INFn75) alarm input signal is valid
Er.131	There is speed when the provincial encoder starts
Er.132	ARM does not match FPGA
Er.133 or Er.033	The Profinet protocol chip cannot communicate with the ARM motor control chip
Er.200	When returns to home, the home signal INFn.34 is not assigned.
Er.201	INFn.xx repeated allocation, one input function bit is assigned to two or more DI
Er.202	Overspeed, when the speed percentage (actual speed/rated speed) exceeds P10.05, it will report
	overspeed.
Er.203	The position error is too large. When the position error P03.17 is greater than P03.19 and
	P03.19 is not equal to 0, the fault is reported. Note that it is easy to report this fault if the
	position is set to a large filter time.
Er.204	Unassigned interrupt fixed length trigger signal INFn.40
Er.205	No return to home before absolute point motion
Er.206	Motor overload
Er.207	Software limit, after enabling the software limit P03.73, when the encoder position value is less
	than the lower limit of the software limit or greater than the upper limit of the software limit,
	this fault will be reported.
Er.208	hardware limit
Er.209	Curve planning failed
Er.210	Excessive tension
Er.211	Breakage failure
Er.212	XY pulse type selection error in tension control mode
Er.213	Fully closed loop position error is too large
Er.214	Prohibit positive (reverse) turn
Er.216	Z point signal is unstable
Er.217	RPDO receive timeout
Er.218	Reserved
Er.219	Motor stall
Er.220	Braking resistor overload
Er.221	The forward stroke switch input function bit INFn.43 is not assigned to the entity DI
Er.222	The reverse stroke switch input function bit INFn.44 is not assigned to entity DI
Er.223	Search home error
11.223	

Er.224	CAN bus state switching error, switching CiA402 state machine when the bus is in
	non-Operation state
Er.225	Unsupported CANopen control mode
Er.226	Absolute value mode lap overflow
Er.227	The battery of the absolute encoder is faulty. (After the battery is powered off, the fault will be
	reported when the power is turned on for the first time, prompting the customer that the
	encoder has been powered off. Connect the battery, and the fault will be automatically
	eliminated after reset.)
Er.228	Inertia learning failed, need to reset P07.03 and P07.04
Er.229	When learning fully closed loop parameters, the position value detected by the second encoder
	is too small
Er.230	reserve
Er.231	Bus error
Er.232	Second encoder battery failure
Er.234	continuous vibration
Er.237	car breakdown
Er.238	Linear motor phase finding failed
Er.239	Linear motor phase finding failed, stuck in forward direction
Er.240	Linear motor phase finding failed, stuck in reverse direction
Er.241	Over-travel error during self-learning
Er.242	Encoder learning error, encoder interference or wrong magnetic pole setting
Er.243	Linear motor phase finding failure (disconnection)
Er.244	Linear motor phase finding failure (large position error)
Er.245	Linear motor phase finding failure (current pulse width is too small)
Er.600	Motor overheating
Er.601	DI function code is not assigned
Er.602	Al zero drift is too large, when Alx zero drift P06.68/P06.73/P06.78 is greater than the
	threshold value P10.10, it will report zero drift too large fault.
Er.603	The zero return time out, when the zero return time is greater than P10.08, this fault will be
	reported.
Er.604	When the absolute encoder is self-learning, the rotation direction of the motor is wrong, and the
	UVW wiring needs to be replaced
Er.605	The battery voltage of the absolute encoder is too low, you need to replace the new battery
	when the drive is powered on
Er.606	The battery voltage of the second encoder is too low, and it needs to be replaced with a new
	battery when the driver is powered on.
Er.607	Inertia learning failed, need to increase P07.33 and then learn
Er.608	U disk read and write failed
Er.609	Drive parameters not found during factory reset
Er.610	Motor parameters not found when restoring to factory defaults
Er.611	EEPROM verification error when restoring to factory defaults
Er.612	Self-learning current loop error
	1

Er.613	Phase finding not yet completed
Er.701	EtherCAT bus error
Er.702	EtherCAT bus dropped
Er.703	After the back clearance compensation is increased, two steps are required before returning to
	zero to eliminate the back clearance

Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set metho d	Effective way	Defaults	read and write method
P09.31	Torque current	-	%	Displays the	-	-	-	RO
	feedback			torque current				
				feedback				
				value.				
P10.01	Software Overcurrent	0~800	%	When the	anytime	Reset takes	400.0	RW
	Threshold			detected		effect		
				current				
				percentage				
				P09.31 is				
				greater than				
				this value, a				
				software				
				overcurrent				
				fault will be				
				reported.				
P10.02	Overload value	0~3276.7	%	Set the	anytime	Immediately	100.0	RW
				overload				
				protection				
				point,				
				generally set				
				as motor rated				
				current/drive				
				rated				
				current*100%				
P10.03	Lock-rotor protection	0~300.0	%	When set to 0,	anytime	Immediately	100.0	RW
	current threshold			no stall			%	
				protection is				
				performed;				
				when the				
				motor is at				
				zero speed, the				
				driver current				

				P09.31 is				
				greater than				
				the stall				
				protection				
				current				
				threshold, and				
				when the				
				duration				
				exceeds the				
				stall protection				
				time threshold				
				P10.04, a stall				
				fault is				
				reported.				
P10.04	Lock-rotor protection	0~65535	ms	-	anytime	Immediately	800	RW
	time threshold							
P10.05	Over speed	0~3276.7	%	When the	anytime	Immediately	150.0	RW
	percentage			percentage of				
				the actual				
				speed/rated				
				speed is				
				greater than				
				the overspeed				
				percentage, an				
				overspeed				
				fault will be				
				reported.				
P10.06	Drive Overheat	0~3276.7	$^{\circ}$	When the	anytime	Immediately	80.0	RW
	Threshold			drive				
				temperature				
				P01.10 is				
				greater than				
				this value, the				
				drive				
				overheating				
				fault will be				
				reported.				
P10.08	Timeout time for	0~32767	s	When the zero	anytime	Immediately	0	RW
	returning to zero			return time				
	position			exceeds this				
				value, a zero				
				timeout fault is				
				reported.				

				When set to 0,				
				the zero return				
				timeout				
				protection is				
				not performed.				
P10.09	Power-off motor	0~1	-	Set whether to	anytime	Immediately	0	RW
	encoder position			memorize the				
	memory function			motor encoder				
	0-Power off does not			position after				
	remember motor			power off.				
	encoder position							
	1-Power-off memory							
	motor encoder							
	position							
P10.10	AI zero drift threshold	0~32767	mV	When the zero	anytime	Immediately	500	RW
				drift of AIx is				
				greater than				
				this value, it				
				will report the				
				excessive zero				
				drift fault.				
P10.11	Motor overload curve	0~5	-	Select the	anytime	Immediately	0	RW
	selection			motor				
				overload				
				curve. When 5				
				is selected, it				
				is a custom				
				overload curve				
P10.12	Zero speed command	0~3276.7	%	Torque limit	anytime	Immediately	0	RW
	automatically reduces			value that is				
	torque limit value			automatically				
				reduced when				
				zero-speed				
				command is				
				received				
P10.13	Custom 1.1 times	0~3276.7	s	Custom 1.1		Immediately	0	RW
	overload curve time			times overload				
				curve time				
P10.14	Custom 1.5 times	0~3276.7	S	Custom 1.5	anytime	Immediately	0	RW
	overload curve time			times overload				
				curve time				
P10.15	Custom 2.0 times	0~3276.7	s	Custom 2.0	anytime	Immediately	0	RW

	overload curve time			times overload				
	overload curve time			curve time				
P10.16	Custom 2.5 times	0~3276.7	2	Custom 2.5	anytime	Immediately	0	RW
F 10.10	overload curve time	0~3270.7	S	times overload	anythine	Ininiediately		ΚW
	overload curve time			curve time				
D10 17	C + 20 +:	0.22767			4.	T 1' 4 1	0	DW
P10.17	Custom 3.0 times	0~3276.7	S	Custom 3.0	anytime	Immediately	0	RW
	overload curve time			times overload				
D10.10		0.22565		curve time				D.W.
P10.18	Speed detection	0~32767	-	When set to	anytime	Immediately	0	RW
	threshold			non-zero, the				
				speeding				
				protection is				
				enabled. The				
				smaller the				
				value, the				
				more sensitive				
P10.20	Current fault code	-	-	Display fault	-	-	-	RO
				code				
P10.21	Selected last x	1~5	-	Used to	anytime	Immediately	1	RW
	failures			choose to				
				check the last				
				5 faults of the				
				servo drive,				
				this function				
				code is used to				
				set the number				
				of faults to be				
				checked:				
P10.22	Fault code for	-	-	Display	-	-	-	RO
	selected x faults							
P10.23	The fault code of the	-	min	Display	-	_	-	RO
	selected x faults							
P10.24	Motor speed of the	_	rpm	Display	_	_	_	RO
1 10.21	selected x faults		- P	pj				1.0
P10.25	The rms value of the		A	Display	_	_	_	RO
1 10.23	motor current for the	-	11	Dispiny		_		RO
	selected x faults							
P10.26	Instantaneous value of		A	Display		_		RO
r 10.20		-	A	Display	-	_	_	KU
	V-phase motor current							
D10 07	for selected x faults			F: 1				D C
P10.27	Instantaneous value of	-	A	Display	-	-	-	RO

	W-phase motor current for selected x faults							
P10.28	bus voltage of selected x faults	-	V	Display	-	-	-	RO
P10.29	Drive temperature for selected x faults	-	$^{\circ}$ C	Display	-	-	-	RO
P10.30	Entity DI state of selected x failures	-	-	Display	-	-	-	RO
P10.31	Entity DO status for selected x failures	-	-		-	-	-	RO
P10.32	Hardware fault cumulative count value	-	-	Display	-	-	-	RO
P10.33	Fault shielding	0~65535		BIT0 Shield Overload BIT1 Shield Software Overcurrent BIT2 Shield Phase Fault BIT3 Shield Current Change Large BIT4 Shield Hardware Overcurrent BIT5 Shield Speed Change Large BIT6 Shield Z Point Unstable BIT7 Shield SYNC Loss BIT8 Shield Current Sensor Fault BIT9 Shield Under voltage	anytime	Immediately	12	RW

				BIT10 Shield				
				Encoder				
D10.24	77 1 0 11	0.65505	20	malfunction			1.50	DIV
P10.34	Hardware failure time	0~65535	20ns	Set the	anytime	Immediately	150	RW
	threshold			threshold for				
				the number of				
				hardware				
				failures. When				
				the duration of				
				a single				
				hardware				
				failure exceeds				
				this value,				
				Er.101 will be				
				reported.				
P10.35	Fault minimum	0~32767	s	When	anytime	Immediately	60	RW
	duration before			reporting		·		
	responding to reset			software				
	fault			overcurrent,				
				hardware				
				overcurrent,				
				drive				
				overheating,				
				motor				
				overload,				
				locked rotor,				
				and braking				
				resistor				
				overload, you				
				must wait for				
				P10.35				
				seconds to				
				reset the fault				
P10.44	Speed loop reference	-	%	Display	-	-	-	RO
	at last valid fault							
P10.45	Velocity loop	-	%	Display	-	-	-	RO
	feedback at the last							
	valid fault							
P10.46	Torque reference at	-	%	Display	-	-	-	RO
	the last valid fault							
P10.47	Torque feedback at	-	%	Display	-	-	-	RO
	the last valid fault							

P10.48	Filtered position error at the last valid fault	-	-	Display	-	-	-	RO
P10.49	current record index	-	-	Display	-	-	-	RO
P10.50	The fault code of the fault with index 0	-	-	Display	-	-	-	RO
P10.51	failure time for failure with index 0	-	S	Display	-	-	-	RO
P10.52	Rotation speed of fault with index 0	-	rpm	Display	-	-	-	RO
P10.53	The rms value of the current for the fault with index 0	-	A	Display	-	-	-	RO
P10.54	Instantaneous value of the V-phase current for the fault with index 0	-	A	Display	-	-	-	RO
P10.55	Instantaneous value of the W-phase current for the fault with index 0	-	A	Display	-	-	-	RO
P10.56	Capacitor voltage for the fault with index 0	-	V	Display	-	-	-	RO
P10.57	The temperature of the fault with index 0	-	° C	Display	-	-	-	RO
P10.58	The DI status of the fault with index 0	-	-	Display	-	-	-	RO
P10.59	The DO status of the fault with index 0	-	-	Display	-	-	-	RO
P10.60	The fault code of the fault with index 1	-	-	Display	-	-	-	RO
P10.61	failure time for failure with index 1	ı	S	Display	-	-	-	RO
P10.62	The speed of the fault with index 1	-	rpm	Display	-	-	-	RO
P10.63	The rms value of the current for the fault with index 1	-	A	Display	-	-	-	RO
P10.64	Instantaneous value of the V-phase current for the fault with	-	A	Display	-	-	-	RO

	index 1							
P10.65	Instantaneous value of the W-phase current for the fault with index 1	-	A	Display	-	-	-	RO
P10.66	Capacitor voltage for the fault with index 1	-	V	Display	-	-	-	RO
P10.67	The temperature of the fault with index 1	-	° C	Display	-	-	-	RO
P10.68	The DI status of the fault with index 1	-	-	Display	-	-	-	RO
P10.69	DO status of fault with index 1	-	-	Display	-	-	-	RO
P10.70	The fault code of the fault with index 2	-	-	Display	-	-	-	RO
P10.71	Failure time of failure with index 2	-	S	Display	-	-	-	RO
P10.72	Rotation speed of the fault with index 2	-	rpm	Display	-	-	-	RO
P10.73	The rms value of the current for the fault with index 2	-	A	Display	-	-	-	RO
P10.74	Instantaneous value of the V-phase current for the fault with index 2	-	A	Display	-	-	-	RO
P10.75	Instantaneous value of W-phase current for fault with index 2	-	A	Display	-	-	-	RO
P10.76	Capacitor voltage of the fault with index 2	-	V	Display	-	-	-	RO
P10.77	The temperature of the fault with index 2	-	° C	Display	-	-	-	RO
P10.78	DI state of the fault with index 2	-	-	Display	-	-	-	RO
P10.79	The DO status of the fault with index 2	-	-	Display	-	-	-	RO
P10.80	The fault code for	-	-	Display	-	-	-	RO

	fault with index 3							
P10.81	Failure time for	-	S	Display	-	-	-	RO
	failure with index 3							
P10.82	Rotational speed of	-	rpm	Display	-	-	-	RO
	the fault with index 3							
P10.83	The rms value of the	-	A	Display	-	-	-	RO
	current of the fault							
	with index 3							
P10.84	Instantaneous value of	-	A	Display	-	-	-	RO
	the V-phase current							
	for the fault with							
	index 3							
P10.85	Instantaneous value of	-	A	Display	-	-	-	RO
	W-phase current for							
	fault with index 3							
P10.86	Capacitor voltage of	-	V	Display	-	-	-	RO
	the fault with index 3							
P10.87	The temperature of	-	° C	Display	-	-	-	RO
	the fault with index 3							
P10.88	DI status of the fault	-	-	Display	-	-	-	RO
	with index 3							
P10.89	The DO status of the	-	-	Display	-	-	-	RO
	fault with index 3							
P10.90	The fault code for the	-	-	Display	-	-	-	RO
	fault with index 4							
P10.91	Failure time for	-	s	Display	-	-	-	RO
	failure with index 4							
P10.92	Rotational speed of	-	rpm	Display	-	-	-	RO
	the fault with index 4							
P10.93	The rms value of the	-	A	Display	-	-	-	RO
	current of the fault							
	with index 4							
P10.94	Instantaneous value of	-	A	Display	-	-	-	RO
	V-phase current for							
	fault index 4							
P10.95	Instantaneous value of	-	A	Display	-	-	-	RO
	W-phase current for							
	fault with index 4							
P10.96	Capacitor voltage for	-	V	Display	-	-	-	RO
	fault with index 4							
P10.97	The temperature of	-	° C	Display	-	-	-	RO
	the fault with index 4							

<u>VECTOR</u>

VC310 series servo driver instruction manual

P10.98	DI state of the fault	-	-	Display	-	-	-	RO
	with index 4							
P10.99	The DO status of the	-	-	Display	-	-	-	RO
	fault with index 4							

7.1.3 Troubleshooting

(1) Er.100 software overcurrent

Fault occurrence conditions:

If the current percentage P09.31 detected by the software is greater than the overcurrent threshold of P10.01, a software overcurrent fault will be reported, which can be shielded by BIT1 of P10.33.

Fault reason		Fault confirmation	Troubleshooting
1. Motor UVW phase	>	Confirm the UVW phase	Adjust the UVW phase
sequence reversed or		sequence and whether	sequence or replace the
missing phase		the phase is missing	motor
0 D10 01++: :- +	>	Check whether the	
2. P10. 01 setting is too		value of parameter	Increase P10.01
small		P10.01 is too small	
	~	Check P07.01 current	
		loop ratio, P07.02	
		current loop	
		integral gain, PO7.03	
3. Gain setting is too		speed loop	Reduce gain related
large		proportional gain,	parameters
large		P07.10 torque	parameters
		feedforward	
		coefficient, whether	
		these parameters are	
		set too large	
	>	Check whether POO. 24	
4. The motor peak current		motor peak current	
percentage setting is too		percentage is	Reduce the percentage of
large		inconsistent with	P00.24 motor peak current
Turge		the actual peak	
		current of the motor	
5. Motor power is too	>	Confirm according to	Replace the motor with a
smal1		the actual load	higher power
	>	Check whether the	
		torque limit value of	
6. The motor output		the drive (the	Decrease the torque limit
current is greater than		default limit source	value
the motor peak current		P05.13) is greater	
		than the motor peak	
		current	

(2) Er.101 hardware overcurrent

Fault occurrence conditions:

The hardware detects that the driver output current reaches the peak threshold.

Fault reason		Fault confirmation	Troubleshooting
	A	Check UVW Phase	-
1. The initial phase of		Sequence	0 , 005 1
the magnetic pole is	>	Whether the servo	Operate Fn005, re-learn
incorrect		motor is a	the encoder
		non-standard motor	
	A	Check whether the	
		driver end and motor	
		end of the UVW cable	
		are in poor contact	
2. Abnormal connection of		and the ports are	Replace or correctly
motor UVW power cable		aged.	connect the motor wire
	>	Unplug the UVW motor	
		cable and check if	
		the wire is	
		short-circuited.	
	A	Determined according	
3. Motor power is too		to actual load	Replace the motor with a
small		conditions	higher power
	>	Unplug the motor wire	
		and measure the	T 1 1 1 1 1
4. Motor damage		resistance between	Unbalanced replacement
		the UVW and the motor	motor
		with a multi meter	
5 The barbin and interest	A	Measure whether the	
5. The braking resistance		resistance across	Replace the braking
is too small or		the driver P, Rb'is	resistor
short-circuited		positive	
	A	Unplug the motor	
		cable, then enable	
6. Drive failure		the servo drive, but	Replace the drive
		still report this	
		fault	
	A	During the rotation	
7 The gain setting is		of the motor, if the	
7. The gain setting is unreasonable		motor vibrates	Adjust gain
um easonable		violently or makes a	
		sharp sound, you can	

		also observe the	
		curve of the current	
		loop through	
		VECObserve	
	>	VECObserve observes	
		whether the control	Modify the acceleration
		command is given too	given by the control
8. The acceleration/		violently	command, increase the
deceleration time is too	>	Check whether the	filter time of the control
short		parameter setting of	command, increase the
		acceleration and	acceleration and
		deceleration time is	deceleration time
		too small	
	>	Check if the motor	
0		cable is too long	Chantan the metan calls
9. Connect the motor UVW	>	Check whether the	Shorten the motor cable, exclude the UVW terminal
line to the capacities		motor UVW is	
10aa		connected to a	and connect the capacitor
		capacitor	
	>	Check if the	D-1
10、机械间隙过大		mechanical clearance	Reduce mechanical
		is too large	clearance

(3) Er.102 over pressure

Fault occurrence conditions:

When the busbar voltage detection value P01.08 is greater than the overvoltage threshold, it will report overvoltage

For drives whose rated voltage P01.07 is less than 300V, the overvoltage threshold is 420V, and for drives whose rated voltage P01.07 is greater than 300V, the overvoltage threshold is 750V.

Fault reason	Fault confirmation	Troubleshooting
1. The rated voltage of the driver is incorrectly set	Check whether the parameter setting of P01.07 is correct	Modify the drive rated voltage P01.07
2. The bus voltage calibration coefficient is set incorrectly	Check whether the parameter setting of P01.09 is correct	Modify bus voltage calibration coefficient P01.09 (adjustment range 90%~110%)
3. The power supply of the drive RST is unstable	> Oscilloscope to check RST power	Adjust the power supply or add a power supply noise filter
4. The DC bus voltage is too high	Use a multi-meter to measure whether the voltages at both ends of the driver P and N are	Adjust the bus voltage calibration coefficient P01.09 (the adjustment range is 90%~110%) or adjust the

		normal	power supply
	>	Check the braking	
		resistor for poor	
		contact, short circuit or	
5. The braking resistor is not		open circuit	Correct wiring or replace
working properly	>	Use a multi-meter to	Correct wiring or replace braking resistor
working property		measure whether the	braking resistor
		resistances at both ends	
		of the driver P and Rb'	
		are normal	
	>	Check whether the	
		parameters of P02.20	P02.20 can be selected by users
6. The parameter setting of		for enabling dynamic	according to their needs,
the braking resistor is		braking, the resistance	P02.21 should be set correctly,
unreasonable		value of braking resistor	and P02.22 can be set up to 5
unicasonable		P02.21, and the power	times the power of the braking
		of braking resistor	resistor
		P02.22 are set correctly	
7. The system is a large	>	View the actual	Properly adjust the deceleration
inertia load, and the		deceleration time	time
deceleration time is too short			time
8. The gain setting is	>	Check to see if the	Adjust the gain
unreasonable		motor oscillates	rajust the gam

(4) Er.103 undervoltage

Fault occurrence conditions:

When the busbar voltage detection value P01.08 is less than the undervoltage threshold, it will report undervoltage.

Undervoltage threshold = drive rated voltage P01.07*1.414*0.7

Fault reason		Fault confirmation	Troubleshooting
1. The RST power supply of	>	Check whether the	
the driver does not match the		parameter setting of	Modify the drive rated voltage
rated voltage P01.07 of the		P01.07 is correct	P01.07
driver.			
2. The acceleration time is	>	View the actual	Decrease acceleration time
too short		acceleration time	Decrease acceleration time
	>	Measuring grid voltage	Adjust the drive rated voltage
3. The grid voltage is too low			P01.07 to be consistent with
			the grid voltage
	>	The drive reports this	
4.Other overloaded devices		fault as soon as other	A direct the DCT newer supply
start		heavy-duty devices are	Adjust the RST power supply
		started	

	>	This fault is reported as	
5.Charging circuit failure		soon as the drive is	Replace the drive
		enabled	
	>	Check whether the P	
		and Rb' terminals of the	
		driver are	
		short-circuited with the	
		ground	
6. Braking resistors P, Rb' are	>	Or remove the braking	Prevent short circuit of braking
short-circuited to ground		resistor, whether to	resistor P, Rb' to ground
		report this fault, if not,	
		it means that the	
		braking resistor P and	
		Rb' are short-circuited	
		to ground	
	>	When using a	
7. Excessive load		single-phase power	Use three-phase power or
7. Excessive load		supply, the actual load	derating
		is too large	
8. The three-phase current of	>	Measure the three-phase	
the main power supply RST		current of the main	Unbalanced, adjust the RST
is unbalanced		power supply RST,	three-phase power supply
15 differenced		UVW	
9. The cross-sectional area of	>	Check if the RST wire	Replacing the RST power cord
the RST wire is too small		meets the driver current	with a larger cross-sectional
and test wife is too small			area

(5) Er.104 **Current sensor failure**

Fault occurrence conditions:

Current sensor failure

Fault reason	Fault confirmation	Troubleshooting
1. Current sensor failure	> -	Replace the drive

(6) Er.105 Encoder failure

Fault occurrence conditions:

The encoder has no signal or the signal is unstable

Fault reason	Fault confirmation	Troubleshooting
1. The encoder wire is in poor contact	> Check the encoder line	Correct wiring
2. The encoder wire is disconnected	> The multi-meter detects the signal line	Replace the encoder wire
3.Subject to electromagnetic interference	Exclude and turn off other equipment that may cause interference	eliminate interference

(7) Er.106 EEPROM failure

Fault occurrence conditions:

EEPROM read data error

Fault reason	Fault confirmation	Troubleshooting
1. EEPROM read data error	> -	Replace the drive

(8) Er.107 Phase sampling fault

Fault occurrence conditions:

Phase sampling fault, when the phase obtained through the HALL switch and the phase obtained through the encoder are too different, this fault is reported.

Fault reason	Fault confirmation	Troubleshooting
1. Phase sampling failure	> -	Set BIT2 of fault shielding parameter P10.33 to 1 to shield this fault

(9) Er.108 FPGA and ARM communication failure

Fault occurrence conditions:

This fault is reported when the values written by the ARM and read to the FPGA are inconsistent.

Fault reason	Fault confirmation	Troubleshooting
1. When the value written by	> -	
ARM and read to FPGA is		Replace the drive
inconsistent		

(10) Er.109 Large current change fault

Fault occurrence conditions:

When the two sampled currents differ by 50%, a fault is reported.

1	3 ,	1
Fault reason	Fault confirmation	Troubleshooting
1. When the two sampled currents differ by 50%	> -	Set BIT3 of fault shielding parameter P10.33 to 1 to shield this fault

(11) Er.111 Abnormal motor winding

Fault occurrence conditions:

When self-learning the winding direction of the motor, the current changes in the wrong direction

Fault reason	Fault confirmation	Troubleshooting
1. The motor winding is	➤ Check motor UVW	Connect the UVW motor cable
abnormal	wiring	correctly

(12) Er.113 Encoder Z point not detected

Fault occurrence conditions:

When the encoder is self-learning, the Z point signal cannot be detected

Fault reason	Fault confirmation	Troubleshooting
1. The encoder wire is in	> Check encoder wire	Correctly connect the encoder
poor contact		wire
	> Connect the encoder	
2. The encoder signal is abnormal	cable correctly, after	
	self-learning three	Replace the motor
aunomai	times, it still reports this	
	fault	

(13) Er.114 Z point offset error

Fault occurrence conditions:

When the encoder is self-learning, it is detected that the Z point signal is larger than the encoder resolution

Fault reason	Fault confirmation	Troubleshooting
	> Connect the encoder	
1. The encoder signal is abnormal	cable correctly, after	
	self-learning three	Replace the motor
	times, it still reports this	
	fault	

(14) Er.115 HALL encoded value error

Fault occurrence conditions:

When self-learning encoder, the HALL code value is both 0 or 1 at the same time

Fault reason	Fault confirmation	Troubleshooting
1. The encoder signal is	➤ After three times of	
	self-learning, this fault	Replace the motor
abnormal	is still reported	

(15) Er.117 overheating

Fault occurrence conditions:

When the drive temperature P01.10 is greater than the overheating threshold P10.06, an overheating fault will be reported.

Fault reason		Fault confirmation	Troubleshooting
1. The temperature of the	>	Measuring drive surface	In angular the drive engline
drive is overheated		temperature	Increase the drive cooling
2. The cooling fan does not	>	Check the fan operation	Replace the cooling fan
work normally			Replace the cooling fair
2 The embient temperature is	>	Thermometer measures	
3. The ambient temperature is		the temperature of the	reduce ambient temperature
too high		site	
4. The motor runs at low	>	Monitor the actual load	
frequency and high current			Increase drive power
for a long time			

(16) Er.118 The HALL encoder value of the wire-saving encoder is wrong when the power is turned on

Fault occurrence conditions:

The HALL code value returned by the wire-saving encoder is wrong when powered on

Fault reason	Fault confirmation	Troubleshooting
1. The signal of the	> The drive is powered on	
line-saving encoder is	again three times, but	Replace the motor
abnormal	still reports this fault	

(17) Er.119 Encoder type mismatch

Fault occurrence conditions:

The encoder type recognized by the FPGA is inconsistent with the encoder type set by the driver.

Fault reason	Fault confirmation	Troubleshooting
	Check whether P00.08	
1. Parameter setting error	and the actual encoder	Modify P00.08
	type are consistent.	
	Check whether the	
	encoder type identified	
2. The motor type is wrong	in the FPGA version	Change motor type or change
	(P01.02) is consistent	FPGA program
	with the actual	
	connected encoder type.	

(18) Er.200 The home switch for return to zero is not assigned

Fault occurrence conditions:

The homing mode needs to be connected to the origin switch, and there is no origin switch assigned in the DI configuration.

Fault reason	Fault confirmation	Troubleshooting
1. The DI is not configured	> Check if the DI is	
with the origin switch input	configured with the	DI configuration origin switch
	origin switch input	input signal INFn.34
signal INFn.34.	signal INFn.34	

(19) Er.201 DI repeat assignment

Fault occurrence conditions:

The same INFn function is assigned to two different DI or VDI terminals.

Fault reason		Fault confirmation	Tr	oublesh	ooting	
1. The same INFn function is	>	View DI or VDI	Modify	DI	24	VDI
assigned to two different DI		configuration	_		or	VDI
or VDI terminals.			configurat	1011		

(20) Er.202 overspeed

Fault occurrence conditions:

When the speed percentage (actual speed/rated speed) is greater than the overspeed percentage P10.05, it will report an overspeed fault.

Fault reason	Fault confirmation	Troubleshooting
1. The setting of overspeed percentage P10.05 is too small	Check out P10.05	Increase P10.05 or decrease the speed percentage
2. The gain is too large	Check the parameter settings of P07.03, P07.04 and P07.05	Decrease the gain
3. HALL switch detection error	> -	Re-learning the encoder
4. Z point offset P00.71 error	> -	For our company's motors, this value is set to 0, and P02.35=8421 should be set before setting this value

(21) Er.203 Position error is too large

Fault occurrence conditions:

When the difference between the position command and the actual position is greater than the excessive position error threshold P03.19, it will report that the position error is too large.

Fault reason	Fault confirmation	Troubleshooting
1. Position command filter parameters P03.06 and P03.07 are too large	Check P03.06 and P03.07	Decrease P03.06 and P03.07
2. Gain is too small	Check whether the parameter settings of P07.03, P07.04 and P07.05 are reasonable	Adjust the gain
3. Position command speed is	View position command	Decrease position command
too large	speed	speed
4. The position error is too large and the threshold P03.19 is too small	Check the excessive position error threshold P03.19	Increase the excessive position error threshold P03.19
5. Mechanical stuck motor	Check whether the mechanical transmission part is stuck	Dealing with Mechanical Stuck Issues

(22) Er.204 No interrupt fixed-length trigger signal assigned

Fault occurrence conditions:

The interrupt fixed length function is enabled, but the DI terminal of the interrupt fixed length trigger function number INFn.40 is not allocated.

Fault reason	Fault confirmation	Troubleshooting
1.DI unassigned interrupt	View DI configuration	Configure a DI as interrupt
fixed-length trigger function		fixed-length trigger function
number INFn.40		number INFn.40

(23) Er.205 There is no zero return before triggering to go to absolute multi-segment position

Fault occurrence conditions:

There is no homing performed before triggering the absolute multi-segment position.

81	<i>66 6</i>	8 1
Fault reason	Fault confirmation	Troubleshooting
1. The zero return is not performed before triggering the absolute multi-segment position.	> -	A zero return is required before triggering an absolute multi-segment position.

235

(24) Er.206 overload

Fault occurrence conditions:

When the motor current works continuously for a certain period of time at a value greater than the rated current, an overload is reported.

Fault reason	Fault confirmation		Troubleshooting
	>	Check out P10.02	Please set P10.02 as the
1. Improper parameter setting			percentage of motor rated
			current and drive rated current.
2. The motor power is not	>	Confirm according to	Please replace the servo system
enough		the actual load	with a higher power level

(25) Er.207 software limit

Fault occurrence conditions:

After enabling the software limit through P03.73, when the actual user position is less than the lower limit of the position and the speed is negative, the software limit will be reported. When the actual user position is greater than the upper limit of the position and the speed is positive, the software limit will be reported.

Fault reason	Fault confirmation	Troubleshooting
1. Improper parameter setting	➤ Check P03.73	Modify P03.73
2. Improper setting of software limit value	> Check P03.74, P03.76	Modify P03.74, P03.76

(26) Er.208 hardware limit

Fault occurrence conditions:

After enabling the hardware limit through P03.73, when the reverse position limit switch is valid and the speed is negative, the hardware limit is reported. When the positive position limit switch is valid and the speed is positive, the hardware limit is reported.

Fault reason	Fault confirmation	Troubleshooting		
1. Improper parameter setting	➤ Check P03.73	Modify P03.73		
	> Check whether the			
2. Whether the installation position of the position limit switch is appropriate.	position limit switch is installed in the proper position.	Adjust the position limit switch installation position		

(27) Er.209 4th power position curve planning failed

Fault occurrence conditions:

4th power position curve planning failed

Fault reason	Fault confirmation	Troubleshooting
	> -	The 4th power position curve
1. The 4th power position		planning failed, reset the
curve planning failed		reasonable speed/position
		planning value

236

(28) Er.213 Fully closed loop position error is too large

Fault occurrence conditions:

In a fully closed loop, the detected position of the second encoder is too different from the motor encoder converted to the second encoder value.

Fault reason	Fault confirmation	Troubleshooting
1, the material slips	> Observe the movement of the material	Press the material tightly to prevent the material from slipping seriously.
2. The full-closed loop position error is too large and the threshold P03.36 is set too small	Check full closed loop position error too large threshold P03.36	Increase the full-closed loop position error too large threshold P03.36
3. The full closed loop position error clearing cycle number P03.40 is not set	Check the full closed loop position error clearing cycle number P03.40	Set a reasonable full-closed loop position error clearing cycle number P03.40
4. Encoder polarity setting error in full closed loop mode	Check whether the parameters set by encoder polarity P03.33 in full-closed loop mode match the actual situation	Modify P03.33 (修改 P03.33)

(29) Er.214 Forward and reverse rotation is prohibited

Fault occurrence conditions:

The forward/reverse rotation is prohibited through P02.03, but the forward/reverse rotation command is actually input

Fault reason	Fault confirmation	Troubleshooting
1. The forward/reverse	> Check whether the	
rotation is prohibited by	entered command is	
setting P02.03, but the	normal	Modify the command direction
forward/reverse rotation		
command is actually input		

(30) Er.216 The signal at point Z is unstable

Fault occurrence conditions:

The difference between the encoder position detected twice at Z point and the actual encoder resolution is too different

Fault reason	Fault confirmation	Troubleshooting
1. The encoder wire is in poor contact	> Check encoder wire	Correct wiring
2. The encoder signal is	➤ After three times of	
abnormal	self-learning encoder,	Replace the motor
aunomiai	this fault is still reported	

(31) Er.217 SYNC signal timeout

Fault occurrence conditions:

The received SYNC signal exceeds the actual sync period

Fault reason	Fault confirmation	Troubleshooting
1. The received SYNC signal	➤ Check whether the	
exceeds the actual synchronization period	CANopen/EtherCAT	Correct wiring
	communication line is	Concet wiring
synchronization period	connected normally	

(32) Er.219 locked rotor

Fault occurrence conditions:

When the drive current percentage P09.31 is greater than P10.03, and the speed is close to zero, and lasts for the time of P10.04, it will report stalled rotor.

Fault reason	Fault confirmation	Troubleshooting
	Check P10.03, P10.04.	
	Generally, P10.03 and	
1 Immonon sottino of	P10.04 use the shortcut	
1. Improper setting of	button in VECObserve	Modify P10.03, P10.04
parameters	software \rightarrow the default	
	settings after a complete	
	set of matching.	
2. The machine jams the	View Mechanical	Dealing with mechanical
motor	Structure	structural problems
2 Madan na arran in dan arran 11	➤ Judging by the actual	T
3. Motor power is too small	load	Increase motor power

(33) Er.220 Braking resistor overload

Fault occurrence conditions:

When the braking resistor is in the braking state continuously and the braking of the braking resistor is greater than the heat dissipation of the braking resistor, the braking resistor is overloaded.

Fault reason	Fault confirmation		Troubleshooting
1. Improper setting of parameters	resistar braking P02.22 heat di	braking resistor nce value P02.21, g resistor power t, braking resistor ssipation tient P02.23	Set P02.21 according to the resistance value of the braking resistor; set the braking resistor power P02.22; P02.23 is generally set to 50
	> The br	aking is frequent,	
2. The power of the braking	and the	e heat dissipation	Choose a braking resistor with
resistor is too small	of the	braking resistor is	higher power
	too sm	all	

(34) Er.221 Forward travel limit switch not assigned

Fault occurrence conditions:

The return-to-zero mode needs to be connected to the forward travel limit switch, and the forward travel limit switch INFn.43 is not allocated in the DI configuration.

Fault reason		Fault confirmation			roublesh	ooting	
1 Unaccioned forward trave	>	Check the DI function	DI	fu	nction	assi	gnment
1. Unassigned forward travel limit switch INFn.43		configuration	Forw	ard	travel	limit	switch
mint switch invii.43		parameters	INFn	.43			

(35) Er222 Reverse travel limit switch not assigned

Fault occurrence conditions:

The back-to-zero mode needs to be connected to the reverse stroke limit switch, and the reverse stroke limit switch INFn.44 is not allocated in the DI configuration.

Fault reason	Fault confirmation	Troubleshooting
1 II. assismed marrage travel	➤ Check the DI function	DI function assignment
1. Unassigned reverse travel limit switch INFn.44	configuration	Reverse stroke limit switch
IIIIII SWIICII INFII.44	parameters	INFn.44

(36) Er223 Failed to find origin

Fault occurrence conditions:

During the zero return process, the origin switch was not found

Fault reason		Fault confirmation	Tro	oublesh	ooting	
	>	Check whether the				
1. Not connected to the origin		origin switch is	Correctly	wire	the	origin
switch		correctly connected to	switch			
		the DI				

(37) Er224 CAN bus state switch failed

Fault occurrence conditions:

During the enable process, the CAN bus state machine is switched to the pre-operational mode

Fault reason	Fault confirmation	Troubleshooting
1. During the enabling	Check the enable	It is not possible to switch the
process, the CAN bus state	process	CAN bus state machine to the
machine is switched to the		pre-operational mode during the
pre-operation mode		enabling process

(38) Er.225 Unsupported CANopen bus operating mode

Fault occurrence conditions:

Unsupported CANopen bus operating mode

Fault reason		Fault confirmation	Troubl	eshooting	
1. Unsupported CANopen	A	-	Unsupported	CANopen	bus
bus operating modes			operating mod	le	

(39) Er.226 Absolute encoder in absolute mode, the number of turns overflows

Fault occurrence conditions:

Absolute encoder in absolute mode, the number of turns overflows

Fault reason	Fault confirmation	Troubleshooting
1. The number of turns	> -	
overflows when the absolute		
encoder is in the absolute		-
value mode.		

(40) Er.227 Absolute encoder battery failure in absolute mode

Fault occurrence conditions:

After the battery is powered off, when the power is turned on for the first time, this fault will be reported, prompting the user that the absolute encoder battery is powered off and the multi-turn position information is lost. After connecting the battery, the fault will be automatically eliminated after reset.

Fault reason	Fault confirmation	Troubleshooting
1. The battery is out of power	Measuring encoder	Replace the battery and power
	battery voltage	on again

(41) Er.228 Inertia learning failed

Fault occurrence conditions:

When the self-learning habit is used, the frictional resistance is too large, and the self-learning current limit P02.36 is too small.

Fault reason	Fault confirmation	Troubleshooting		
1. When the self-learning	➤ Check P02.36			
habit is used, the frictional				
resistance is too large, and		Increase P02.36		
the self-learning current limit				
P02.36 is too small.				
2. The inertia of the system is	➤ Check P07.33			
too large, and the				
acceleration and deceleration		Increasing P07.33		
time P07.33 of the learning				
habit is too small				
3. The gain setting is not	➤ If the motor shakes	Increase P07.03, decrease		
appropriate		P07.04		

(42) Er.229 Full closed-loop parameter learning failed

Fault occurrence conditions:

During the full-closed-loop parameter learning process, the change of the position value of the second encoder is too small

Fault reason	Fault confirmation	Troubleshooting			
1. During the	Check the full	Ensure that during the full			
full-closed-loop parameter	closed-loop learning	closed-loop learning process,			
learning process, the change	rning process, the change process to see if the				
of the position value of the	second encoder is	encoder to move, and there is			
second encoder is too small	moving normally	no slippage			

(43) Er.600 Motor overheating

Fault occurrence conditions:

Motor temperature is too high

Fault reason		Fault confirmation	Troubleshooting				
1. The load is too large, and	➤ Measure motor		Need	to	replace	a	larger
the motor heats too seriously		temperature	capacity motor				
2. The ambient temperature is	> Detect the ambient		Reduc	e	site	a	mbient
too high		temperature on site	tempe	ratur	e		

(44) Er.601 DI function code is not assigned

Fault occurrence conditions:

DI function code is not assigned

Fault reason	Fault confirmation	Troubleshooting
1. The speed or torque source	Check if the DI	
AB switching is enabled but	configuration is	Configure DI compathy
the AB switching function bit	correctly configured	Configure DI correctly
is not assigned.		

(45) Er.602 AI zero drift is too large

Fault occurrence conditions:

AI1 zero drift setting P06.68 or AI2 zero drift setting P06.73 or AI3 zero drift setting P06.78 is greater than AI zero drift threshold P10.10

Fault reason	Fault confirmation	Troubleshooting
1. AI zero drift is too large	> Check whether the	Make some the angles input is
	input analog quantity is	Make sure the analog input is normal
	normal	Horman

(46) Er.603 Back to zero timeout

Fault occurrence conditions:

The zero return process exceeds the zero return timeout time P10.08

Fault reason	Fault confirmation	Troubleshooting		
1. The origin signal is not	> Check whether the	Normal access to the zero		
properly connected	origin signal is normal	return origin signal		

(47) Er.604 Motor rotation direction is wrong during self-learning

Fault occurrence conditions:

Motor rotation direction is wrong during self-learning

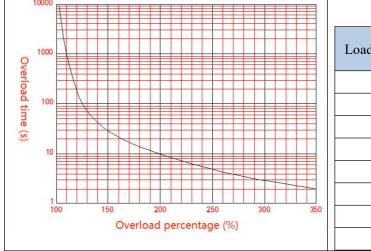
Fault reason	Fault reason Fault confirmation	
1. The motor rotation direction is wrong during self-learning	 During self-learning, check the rotation direction of the motor 	Check whether the motor and encoder are normal
2. The UVW phase sequence of the motor is connected incorrectly	Confirm UVW Phase Sequence	Confirm UVW Phase Sequence

(48) Er.605 Absolute encoder battery alarm

Fault occurrence conditions:

Fault reason		Fault confirmation	Troubleshooting			
	>	Check the battery	The absolute encoder			
1. The absolute encoder	voltage works in absolute value mo					
works in absolute value	and the battery voltage is to					
mode, and the battery voltage	low.					
is too low			If the battery is not			
			needed, change the value of			
			P00.41 to 3 to shield the fault.			

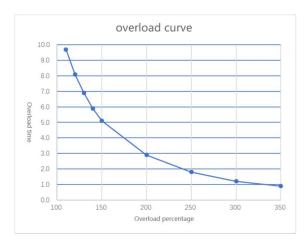
The absolute encoder works in absolute value mode, and the battery voltage is too low


7.1.4 Motor overload protection

The motor load ratio is defined as (torque output percentage Un013)/(overload value P10.02). The load ratio of the motor output and the time it can run continuously have the following relationship. That is, the larger the motor load ratio, the shorter the continuous running time. Once the continuous running time is exceeded, the motor overload fault will be reported.

$$Motor \ load \ proportion = \frac{Torque \ output \ percentage \ Un013}{Overload \ value \ P10.02}$$

$$Torque \ output \ percentage = \frac{actual \ current}{Drive \ rated \ current} \times 100\%$$


Different overload curves can be selected by parameter overload curve selection P10.11. This function is only valid when the ARM firmware version is 0.104 and above.

Overload curve 0:

Load proportion	Continuous running time (s)
1.1	1000
1.2	200
1.4	42
1.7	18
2.1	8.4
2.4	5.5
2.7	4.0
3.0	2.9

➤ Overload curve 1:

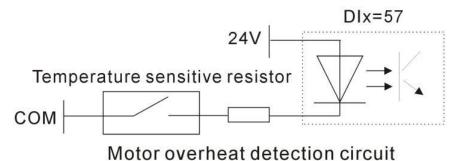
Load proportion	Continuous running time (s)
1.1	9.7
1.2	8.1
1.4	5.9
1.5	5.1
2.0	2.9
2.5	1.8
3.0	1.2
3.5	0.9

Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P10.02	Overload value	0~3276.7	%	Set overload	anytime	Immediately	100	RW
				protection				
				point				

7.1.5 Braking resistor overload protection

According to the actual set resistance value and resistance power, Brake according to the power set in P02.22. For 220V drives, when the DC bus voltage is greater than 380VDC, the dynamic braking circuit can be started by setting parameters. For 380V drives, when the DC bus voltage is greater than 680VDC, the dynamic braking circuit can be activated by setting parameters. It can brake continuously for 33s under the condition of rated power and zero heat dissipation coefficient. If the braking time is exceeded, an overload fault of the braking resistor will be reported. When the braking resistor does not work, if the heat dissipation coefficient is not zero, it will dissipate heat according to the set heat dissipation coefficient. If the heat dissipation coefficient is set to 100%, the heat can be dissipated from the maximum heat to 0 in 10s. In general, please refer to the table below for the selection of braking resistors. The actual resistance used needs to be calculated according to the field conditions.


input power	Noise filter	Rated current (A)	Recommended Brake Resistor				
			Resistance	Resistor Power	Minimum automatic		
	(A)		value (Ω)	(W)	resistance (Ω)		
Three-phase 220V	5	3	350	150	25		
	5	6	150 300		25		
	10	12	80	600	45		
Three-phase 380V	10	7	250	600	75		
	20	12	150	1000	75		
	20	16	100	1500	30		
	20	20	80	2000	20		
	30	27	60	2500	20		
	30	32	40 3000		15		
	40	38	32	5500	14		
	50	45	27	6500	14		
	70	60	20	9000	14		
	80	75	16	12000	10		
	100	90	13	13000	10		
	120	110	10 18000		7.5		
	120	150	8.2	23000	7.5		

Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P02.21	Braking resistor	0~3276.7	Ω	It is used to	anytime	Immediately	0	RW
	resistance			set the				
				resistance				
				value of the				
				braking				
				resistor of the				
				driver.				
P02.22	Rated power of	0~3276.7	KW	Power used to	anytime	Immediately	0	RW
	braking resistor			set the				
				braking				
				resistor of the				
				drive				
P02.23	Braking resistor heat	0~100	%	Set the heat	anytime	Immediately	50	RW
	dissipation coefficient			dissipation				
				coefficient of				
				the resistor				
				when using a				
				braking				
				resistor. If set				
				to 100%.				
				Then 10s can				
				drop from the				
				maximum				
				heat to 0.				

7.1.6 Motor overheat protection

Set the DI function bit to INFn.57, and connect an external motor overheat detection circuit. The motor overheat detection circuit adopts PTC protection. The schematic diagram is as follows. When the output of the external motor overheat detection circuit pulls this DI to be valid, the driver reports the motor overheat fault Er.600.

245

7.1.7 Motor phase loss protection

The servo drive has input phase loss and output phase loss protection functions, and it is determined by P10.07 whether to enable or not. Input phase loss means that the input voltage R, S, T of the servo is connected to one less phase. Output phase loss means that the motor lines U, V and W are connected to one less phase. Parameter P10.07 has 16 bits, from the 0th to the 15th respectively. When the 0th bit is 1, the output phase loss protection is enabled, and when the 1st bit is 1, the input phase loss protection is enabled. That is, when P10.07=0, no phase loss protection is enabled; when P10.07=1, output phase loss protection is enabled; when P10.07=1, input phase loss protection is enabled; When 07=3, the input and output phase loss is enabled at the same time.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P10.07	Phase loss protection	0~32767	-	When the 0th	anytime	Immediately	3	RW
	settings			bit is 1, the				
				output phase				
				loss				
				protection is				
				enabled;				
				when the 1st				
				bit is 1, the				
				input phase				
				loss				
				protection is				
				enabled.				

7.2 Holding brake output function

The holding brake is a mechanism that prevents the servo motor shaft from moving and keeps the motor locked in position when the servo drive is in a non-operational state, so that the moving part of the machine will not move due to its own weight or external force.

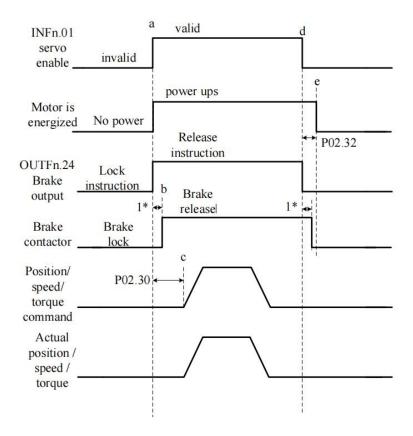
For a servo motor with a brake, if the brake output OUTFn.24 is assigned to a terminal, the brake function will be automatically enabled. It should be noted that the effective level of the brake function terminal can only be set to a low level, otherwise the brake will be released during the power-on process.

The related output function numbers are as follows.

Function bits	Bit description
OUTFn.24	Holding brake output.

When it is invalid, the power supply of the brake is disconnected, the brake acts, and	the motor
is in a position lock state;	
When it is valid, the brake power is turned on, the brake is released, and the motor ca	n rotate.

7.2.1 Braking process


The brake is divided into two situations, the first is the static braking process, and the second is the dynamic braking process.

The braking sequence in static state refers to the braking process when the motor speed is lower than 20rpm at the moment when the off-enable command is input (that is, INFn.01 switches from ON to OFF).

The braking sequence under dynamic conditions refers to the braking process when the motor speed is higher than 20rpm at the moment when the disable enable command is input (that is, INFn.01 switches from ON to OFF).

> Static brake process

The moment when INFn.01 switches from ON to OFF, the brake process when the motor speed is lower than 20rpm is as follows.

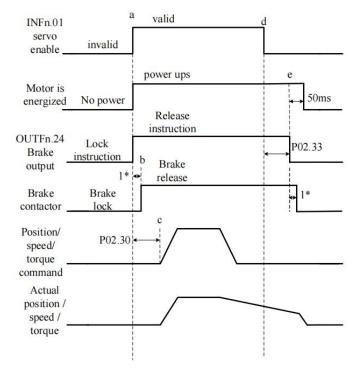
Initially, the holding brake is locked. At time a, the PLC gives the servo enable signal (INFn.01), the servo immediately energizes the motor after receiving the enable signal, the motor locks, and issues the brake release command (OUTFn.24) at the same time, waiting for 1* this period of time Then, at time b, the brake contactor action is completed and the brake is released. The servo driver starts to receive the enable signal, and after P02.30 ms to time c, it

starts to receive the position/speed/torque command, and the motor starts to rotate. After the motor rotates and reaches time d, the PLC sends out the enable signal. When the servo detects that the motor speed is lower than 20rpm, it executes the static brake process and immediately sends the brake lock signal. After a delay of 1* time, the brake contactor acts. After completion, the brake is locked, and then at time e, the motor is powered off.

Note: 1* is the time from the servo sending the brake signal to the actual brake contactor action.

P02.32 is the power-on time of the driver after the brake is locked to prevent the mechanical moving part from moving due to its own weight or external force after the servo is powered off.

P02.30 is the delay time from when the drive is enabled to when the input position/speed/torque command is valid.


Note: After the drive is enabled, it is forbidden to input any torque or speed command within the time range of P02.30. Likewise, the position/speed/torque commands must brake the motor when the motor is disabled.

Brake process under dynamic conditions

When the servo enable is turned from ON to OFF, if the current motor speed is greater than 20rpm, the drive will execute the dynamic brake process. After the servo enable is turned off, the servo always detects the following two conditions, and if any one of the conditions is satisfied, it outputs the brake lock signal.

- a. The filtered motor speed (P04.21) is lower than the brake zero speed threshold (P02.31);
- b. Start timing when the servo enable turns from ON to OFF, and the time exceeds the effective maximum waiting time of the holding brake (P02.33).

After outputting the brake lock signal, the servo will continue to be powered for 50ms.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P02.30	After the brake	0~32767	ms	The servo	anytime	Immediately	250	RW
	release command is			drive starts to				
	output, the command			receive the				
	input is delayed			enable signal,				
				and after the				
				time of				
				P02.30, it				
				starts to				
				receive the				
				position/spee				
				d/torque				
				command,				
				and the motor				
				starts to				
				rotate.				
P02.31	Brake zero speed	0~32767	rpm	When the	anytime	Immediately	30	RW
	threshold			motor speed				
				is lower than				
				P02.31, the				
				brake lock				
				signal is				
				output				
P02.32	Power-on hold time	0~32767	ms	After	anytime		150	RW
				outputting the				
				brake lock				
				signal, the				
				servo will				
				continue to				
				maintain the				
				power-on				
				time P02.32.				
				This				
				parameter is				
				only used				
				when the				
				brake output				
				function is				
				valid.				

P02.33	The maximum	0~32767	ms	When the	anytime	Immediately	500	RW
	waiting time of the	:		servo enable				
	brake signal output			is turned from				
				ON to OFF,				
				the timing				
				starts. If the				
				time exceeds				
				P02.33, the				
				brake lock				
				signal is				
				output.				

7.3 Description of dynamic braking function

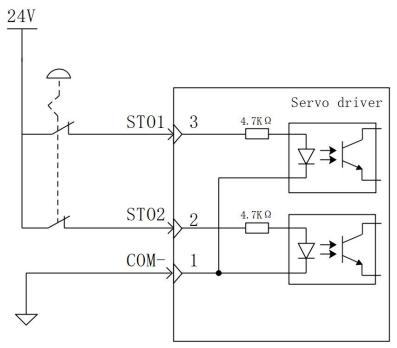
The servo driver of VEC E1 and E2 structure types (see 2.1.1 Driver Appearance) has the function of dynamic braking inside. After the driver is powered on, the servo driver will detect the DC bus voltage in real time. When the DC bus voltage reaches a specific value, the servo driver will short-circuit the U and V phases in the motor phase sequence through the pull in and turn off of the relay.

When the servo driver detects that the DC bus voltage is more than 70% of the rated voltage, the relay will be disconnected. At this time, the U and V phases are open circuited. When it detects that 65%~70% of the rated voltage, the relay will remain in the previous working state. If the relay was pulled in before, it will also remain in the pulled in state. If the previous state is disconnected, it will also remain in the disconnected state. When it detects that the DC bus voltage is less than 65% of the rated voltage, The driver will short-circuit the U and V phases of the motor phase sequence through the relay pickup, thus greatly reducing the braking time.

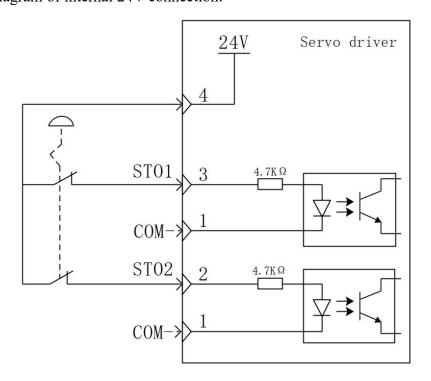
7.4 Introduction of STO safety terminal

Note: The driver with STO function needs to be ordered, and this function is non-standard, but the general servo driver does not have this function.

Pin description of servo STO safety terminal


Pin number	dafult	describe
1	COM	STO reference ground
2	STO2	Control input of STO2
3	STO1	Control input of STO1
4	24V	24V internal power supply

Two independent inputs are configured as two-channel inputs of STO function: STO1/STO2.


In order to be more humanized in the debugging process, pins with power supply voltage (+24V) are added.

The STO function of CN4 port is turned on by default. If a safety circuit is installed, but STO function is not needed, it is necessary to connect STO1/STO2 to 24V.

Example diagram of external 24 connection:

Example diagram of internal 24V connection:

7.5 Instructions for the use of absolute value encoder

The absolute value encoder not only detects the position of the motor within one rotation, but also counts the number of rotations of the motor. It can memorize 16-bit multi-turn data, and the single-turn resolution has two types: 17-bit and 24-bit. A single revolution with 17-bit resolution produces 131,072 encoded values, and a single revolution with 24-bit resolution produces 16,777,216 encoded values. The absolute value system has incremental use mode and absolute value use mode, which can be modified by P00.18. Incremental use mode uses the absolute encoder as an incremental encoder, without battery, without memorizing the number of turns, and it needs to return to zero every time. In the absolute value mode, the battery needs to be added, and the number of turns will also be memorized. It only needs to perform the zero return once, but the motor stroke is limited. Specifically, after the encoder is connected to the battery for the first time, the motor will be based on this., the maximum can only be rotated forward 32767 circles, and the maximum can only be reversed 32767 circles, otherwise the encoder overflow fault will be reported.

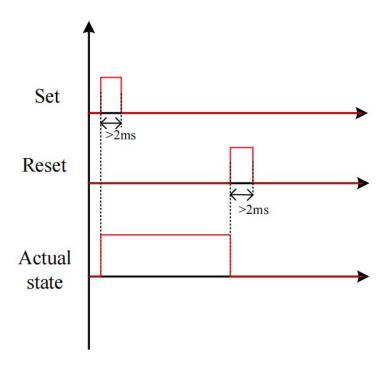
For the absolute value use mode of the absolute value system, when the battery is powered on for the first time, the drive will report Er.227 (battery power failure fault). Record the mechanical zero offset (that is, the distance between the mechanical zero position and the encoder zero position). At this time, the mechanical position and the encoder position have the following relationship:

Mechanical position = Encoder position - Mechanical zero point offset

It should be noted that when using an incremental encoder, the encoder position will automatically return to zero after returning to zero, that is, the mechanical position and the encoder position are the same after returning to zero. However, using an absolute encoder, after returning to zero, the encoder position does not return to zero. At this time, the mechanical position and the encoder position are different from the mechanical zero offset. The command value in the multi-segment position command mode refers to the mechanical position, and the unit is the user position unit.

When the battery voltage is too low, the driver will report Er.605 (battery voltage is too low fault). At this time, the battery needs to be replaced when the driver is powered on.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P00.08	Encoder type	0~8	ms		Stop to	Reset takes	0	RW
	0:Incremental encoder				setting	effect		
	1:17-bit absolute							
	value encoder							
	2:24-bit absolute							
	value encoder							
	3:magnetic encoder							
	4:Rotary encoder to							


	incremental encoder						
	5:Wire-saving						
	incremental encoder						
	multi-turn						
	7:23-bit Tamagawa						
	absolute value, single						
	lap						
	8:17-bit Tamagawa						
	absolute value, single						
	lap						
P00.18	Absolute value	0~1	-	anytime	Immediately	0	RW
	system usage patterns						
	0:Incremental mode						
	1:Absolute value						
	mode						
P00.37	Mechanical zero	0~	-	/	/	/	RO
	offset low 32 bits	42949672					
		96					
P00.39	Mechanical zero	0~	-	/	/	/	RO
	offset high 32 bits	42949672					
		96					
P00.41	Absolute encoder	0~ 3	-	/	/	/	RO
	battery failure alarm						
	shield						
	-						
	shield						
	shield BIT0: Shield battery						
	shield BIT0: Shield battery alarm						
P03.90	shield BIT0: Shield battery alarm BIT1: Shield battery	-21474836	user	/	/	0	RO
P03.90	shield BIT0: Shield battery alarm BIT1: Shield battery failure	-21474836 48~	user positi	/	/	0	RO
P03.90	shield BIT0: Shield battery alarm BIT1: Shield battery failure actual mechanical			/	/	0	RO

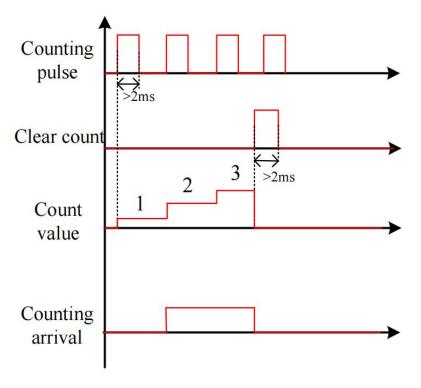
7.6 Other auxiliary functions

7.6.1 Internal flip-flop function

There is a software trigger inside the servo. The software trigger is realized by MCU software scanning. The trigger has a reset (clear) input function bit INFn.59, a set input

function bit INFn.60, and a status output function bit. OUTFn.30. The timing of the three is shown in the figure below. It should be noted that the internal trigger is implemented by software scanning, therefore, the pulse width of all trigger signals must be greater than 2ms.

Related input function bits.


Function bits	Bit description
INFn.59	The rising edge resets the output OUTFn.30 of the internal flip-flop
INFn.60	The rising edge sets the output OUTFn.30 of the internal flip-flop

Related output function bits.

Function bits	Bit description
OUTFn.30	The output of the internal flip-flop

7.6.2 Software counter function

A software counter is implemented inside the servo. The software counter is realized by MCU software scanning. The counter has a count pulse input bit INFn.61, a count clear input function bit INFn.62, and a status output function bit OUTFn.31. The timing of the three is shown in the figure below, where the count arrival register P02.39 is set to 2. The count value P02.37 counts the pulse signal. When the count value P02.37 reaches the count reach value P02.39, the count reach signal OUTFn.31 is valid. The count value clear pulse INFn.62 clears the count value. It should be noted that the internal counter is implemented by software scanning, therefore, the pulse width of all trigger signals must be greater than 2ms.

Related input function bits.

Function bits	Bit description
INFn.61	Count pulse input of internal software counter
INFn.62	Rising edge clears the count value of the internal software counter

Related output function bits.

Function bits	Bit description
OUTFn.31	Internal counter counts up to output

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P02.37	Internal software	0~214748	-	This value is	-	-	-	RO
	counter count value	3647		read-only.				
				Double-byte				
				parameter,				
				and				
				power-down				
				retention				
P02.39	Internal software	0~214748	-	Double-byte	anytime	Immediately	0	RW
	counter reached value	3647		parameter.				

T 71	_	α	n.	\sim	ъ
V	НΊ		ľ	()	К

		When the		
		count value		
		P02.37		
		reaches the		
		count reach		
		value P02.39,		
		the count		
		reach signal		
		OUTFn.31 is		
		valid.		

7.6.3 U disk update/save parameter function

The servo can save all the parameters inside the servo to the U disk through the USB interface, or update the parameters in the U disk to the servo through the USB interface.

The operation steps for saving parameters to the U disk are:

- ① Set the startup option P02.09=1.xx (save the servo parameters to the U disk before startup, the file name is xx, xx can be any number)
 - (2) Insert U disk
- ③ After restarting the servo again, the parameters will be saved to the U disk, and the file name is fixed as PARAxx.CSV. If there is a PARAxx.CSV file in the U disk, it will be automatically replaced. The servo will enter the rdy state only after the file is saved.

The operation steps for updating parameters from the U disk are:

- ① First set the startup option P02.09=2.xx (update the parameters in the U disk to the servo before startup, the file name is xx, and xx is the number in the parameter file name)(先设置启动选项 P02.09=2.xx
 - (2) Insert U disk
- 3 After restarting the servo again, the parameters in the PARAxx.CSV file in the U disk will be updated to the servo, and the servo will enter the rdy state after completion.

Note: U disk must be formatted as FAT32 file system to operate

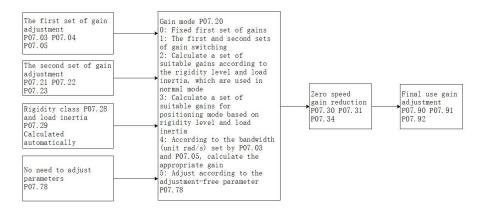
Chapter 8 Adjustment

8.1 Control loop gain adjustment

Control loop gains include velocity loop proportional gain, velocity loop integral gain, and position loop proportional gain. There are six types of control loop gain adjustment modes. The gain can be adjusted by selecting one of the modes. The first type, the first set of gains is fixed. The second type, the first set of gain and the second set of gain are switched. The third is to automatically calculate a suitable set of gains for normal mode according to the set stiffness level. Fourth, according to the set rigidity level, a set of suitable gains for positioning mode is automatically calculated. The fifth type is to automatically calculate the gain by setting the speed loop and position loop bandwidth. The sixth type, adjust according to the adjustment-free parameter P07.78.

The first type, the first set of gains is fixed: in this mode, the user can manually modify the three values of P07.03, P07.04, and P07.05 to optimize the control performance.

The second type, switching between the first set and the second set of gains: switch between the first set of gains and the second set of gains according to the switching condition P07.24 and other switching related parameters.


The third and fourth modes automatically calculate a set of suitable gains according to the set rigidity level and the self-learned load inertia. The difference between the two is that the gain calculated by the third mode is mainly used for ordinary mode, the gain calculated in the 4th mode is mainly used in the positioning mode.

The fifth type is to automatically calculate the gain by setting the speed loop and position loop bandwidth.

The sixth type, the adjustment-free function. Adjust the gain according to the adjustment-free parameter P07.78.

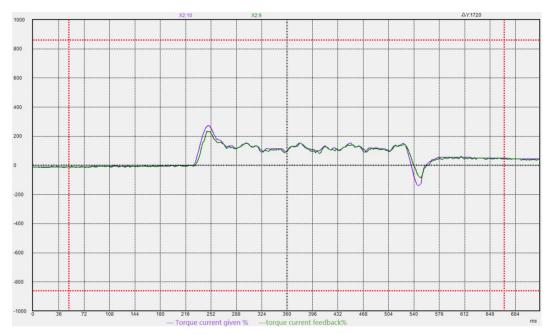
When using the 3rd/4th/5th/6th gain adjustment method, you must set the motor rated current P00.01, the motor rated torque P00.25, the motor rotor inertia P00.27, the load inertia ratio 07.29, and the drive rated current P01. 03.

In addition, the servo driver has a zero-speed gain attenuation/amplification function, that is, when the motor speed is less than the zero-speed attenuation threshold P07.32, the speed loop proportional gain/integral gain, position loop proportional gain, and current loop proportional/integral gain can be reduced or increased. up to a certain percentage. The zero-speed gain attenuation can effectively avoid the high-frequency vibration of the motor at zero speed. The zero-speed gain amplification can effectively speed up the positioning time at low speed.

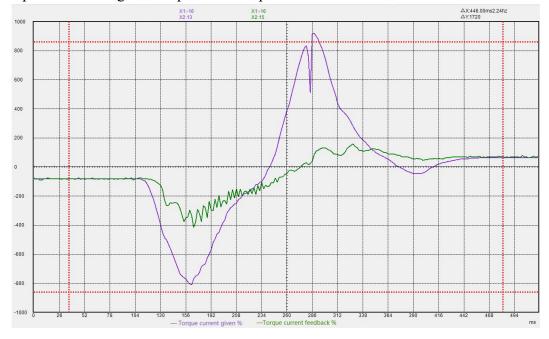
Gain switching example: when the gain switching condition P07.24=2, the gain switching level P07.25=2000, and the gain switching time lag P07.26=100, the gain switching conditions are: take the speed command as the basic switching condition, the speed command When rising, when the speed command is greater than 2100 (P07.25+P07.26), switch to the second set of gains; when the speed command decreases, when the speed command is less than 1900 (P07.25-P07.26), switch back to the first set of gains gain.

Remarks: The units of parameters P07.25 and P07.26 change according to the selection of P07.24 (gain switching condition).

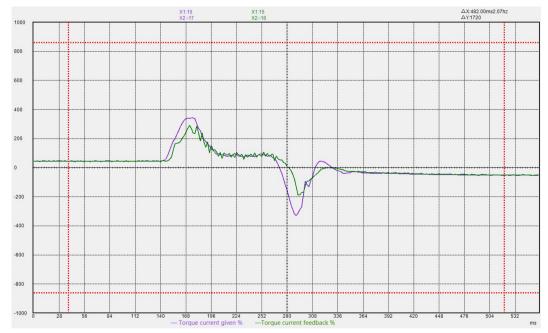
	ed parameters are as iono	****								
Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method			
P07.01	Current loop proportional gain	-767	-	anytime	Immediately	100	RW			
P07.02	Current loop integral gain	0~32767	-	anytime	Immediately	20	RW			
	Speed loop proportional gain	0~32767	-	anytime	Immediately	600	RW			
P07.03	Set the proportional gain of loop. The larger the value, it may cause vibration, so a the position loop gain, you	the faster the r	esponse of t d be paid to	he speed l it. In posit	oop. However	r, if it is set t	oo large,			
P07.04	Speed loop integral gain	0~32767	-	anytime	Immediately	50	RW			
P07.40	Speed loop differential gain	0~32767	-	anytime	Immediately	0	RW			
	Position loop proportional gain	0~32767	-	anytime	Immediately	200	RW			
P07.05	Sets the proportional gain of the position loop. This parameter determines the responsiveness of the position loop. Setting a larger position loop gain can shorten the positioning time. But be careful: setting too large may cause vibration.									


P07.06	Percentage of position loop maximum output	0~100.0%	-	anytime	Immediately	100%	RW					
	Sets the maximum speed po	ercentage for t	he position	loon outni	ıt							
	Output voltage filter time	0~32767		anytime	Immediately	0	RW					
P07.07	Set the filter time of the vo		the motor	anytime	miniculatory	0	ICVV					
	Torque feedforward filter	0-63	lic motor	anytime	Immediately	10	RW					
P07.08	time constant	0-03		anythic	Illinediately	10	IX VV					
PU7.08		Set the torque feedforward filter time constant, the greater the inertia, the greater the value										
	-	0-63	istant, the gi	anytime	Immediately	10	RW					
P07.09	Speed feedforward filter time constant	0-63		anytime	immediately	10	RW					
	Set the speed feedforward filter time constant. The larger the inertia, the larger the value.											
	Torque feedforward	0~32767	-	anytime	Immediately	0	RW					
D07.10	coefficient											
P07.10	In non-torque control mode	e, the torque f	eedforward	signal is r	nultiplied by 1	P07.10, and	the resu					
	is called torque feedforwar	d, which is use	ed as a part	of the torq	ue command.							
	Speed feed forward	0~300.0	-	anytime	Immediately	50.0	RW					
	coefficient											
P07.11	In position control mode ar	nd full closed l	oop functio	n, multiply	the speed fee	dforward si	gnal by					
	P07.11, and the result obtain	ined is called s	peed feedfo	rward, wh	ich is a part of	f the speed o	comman					
	Torque filter type	0~4	-	anytime	Immediately	0	RW					
	0-low pass filtering											
	1-notch filter											
	2-No filtering											
P07.12	3-Low pass and notch											
	cascade											
	4-Automatic calculation											
	of filter parameters											
	Gain adjustment mode	0~5	-	anytime	Immediately	0	RW					
	0-Fixed first set of gains: P)5			-						
	1-First and second set gain switching											
P07.20	2-Determined according to	•	P07 28 and	load inerti	a P07 29 jised	l in normal	mode					
107.20	3-Determined according to	<i>C</i> ,			ŕ							
	4-Gain is automatically cal						ing moc					
	5-No adjustment required,					O						
	The second set of speed	0~32767	ling to parar	anytime	Immediately	800	RW					
P07.21	1	0~32707	-	anythic	Illinediately	800	KW					
	loop proportional gain	0.22767		op::ti	Immadiat-1-	10	DW					
P07.22	The second set of speed	0~32767	-	anytime	Immediately	10	RW					
	loop integral gain	0.22767		4:	T 1' . 1	200	DIII					
P07.23	The second set of	0~32767	-	anytime	Immediately	200	RW					
	position loop											

	proportional gain										
	Gain switching condition	0~7	-	anytime	Immediately	0	RW				
P07.24	Gain switching condition 0-IO switching; INFn.41 sw 1-When the torque comman is greater than (gain switch set of gains; torque comman 2-Switch to the second set of gains when the speed comman 3-Switch to the second set of set of gains when the acceleration of gains when the speed comman 4-Switch to the second set of when the speed error is great the speed error is less than a 5-Switch to the second set of second set of gains when the	vitching, use that is large, swing level P07.2 and is less than of gains when mand is greater mand is less that of gains when eration communication communication are than (P07) (P07.25-P07.2 of gains when the position error to the position error to the state of gains when the position error to the state of gains when the position error to the state of gains when the position error to the state of gains when the position error to the state of t	itch to the so 25 + gain sw (P07.25- P0 the speed co r than (P07.25-) the accelera and is greate command is left the speed en .25+P07.26) 26) the position	et of gains econd set of vitching de 07.26), switchmand is 25+P07.26 P07.26) gattion commer than (P0 ess than (P tror is larger; switch be error after	when valid of gains; where lay P07.26), sitch back to the slarge; switch back in. nand is large; 7.25+P07.26) 107.25-P07.26 107.25-P07.26 108 is switch to the first of the first results of the first results of the switch in the switch to the first results of the switch in the switch to the first results of the switch in the switch i	to the second to the first switch to the second to the first switch to the switch to the switch back.	command e second gains. nd set of set of e second k to the t of gains s when				
	back to the first set of gains 6-If positioning is completed, switch to the second set of gains, and switch to the first set of gains if no positioning is completed. 7-Motor phase switching gain; when the motor phase is in the range of (gain switching level ± gain switching time lag), switch to the second set of gains, and other phases switch to the first set of gains; the motor phase can be viewed through P09.39										
	Gain switching level	0~32767	-	anytime	Immediately	0	RW				
P07.25	Set the level that satisfies the actual switching action the different gain switching	is affected by	the two con	nditions of							
	Gain switching time	0~32767	_	anytime	Immediately	0	RW				
	delay	0 02/0/					25.1				
P07.26	Set the time delay that satisfies the gain switching condition. The generation of the actual switching action is jointly affected by the two conditions of level and time delay. According to the different gain switching conditions, the unit of the switching time delay will change accordingly.										
	Gain switching time constant	0~32767	ms	anytime	Immediately	10	RW				
P07.27		In position control mode, if P07.23 (second position loop gain) is much larger than P07.05 (first position loop gain), set the time for switching from P07.05 to P07.23 after the switching action is									
P07.28	Rigidity level	1~31	_	anytime	Immediately	10	RW				
P07.29	Load inertia, obtained			anytime	Immediately	400	RW				

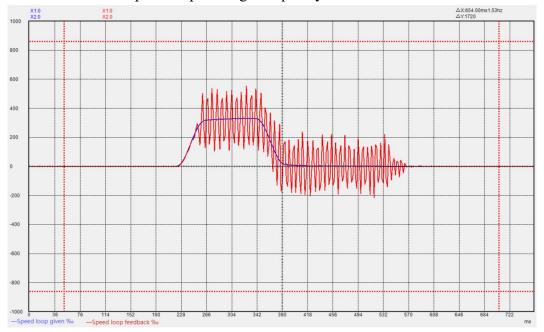

	self-learning									
P07.30	Zero speed speed gain reduction/amplification	0~3276.7	%	anytime	Immediately	50.0	RW			
P07.31	Zero-speed position gain reduction/amplification	0~3276.7	%	anytime	Immediately	100.0	RW			
P07.34	Zero-speed current gain reduction/amplification	0~3276.7	%	anytime	Immediately	100.0	RW			
	Zero speed decay threshold	0~32767	rpm	anytime	Immediately	10	RW			
P07.32	When the rotation speed is less than this value, the actual active speed loop proportional gain integral gain, position loop proportional gain, and current loop proportional gain integral gain are attenuated/amplified according to P07.30, P07.31, and P07.34 respectively.									
P07.33	Inertia self-learning acceleration and deceleration time	0~32767	ms	anytime	Immediately	500	RW			
P07.35	Inertia learning option 0-After the inertia learning is completed, the speed and position loop gains are not automatically matched 1-After the inertia learning is completed, match a set of gains according to the rigidity level P07.28	0~1	-	anytime	Immediately	0	RW			
P07.38	Vibration Monitoring Threshold Percentage	0~32767	%	anytime	Immediately	100	RW			
P07.39	Vibration monitor value	-	-	-	-	-	RO			
	No need to adjust parameters A. B format	0.0-3276.7	-	anytime	Immediately	4.1	RW			
P07.78	A. B format A represents the stiffness, t generally set below 4. B represents the size of the larger the value that needs	load inertia, tl								
P07.90	Actual speed loop proportional gain	-	-	-	-	-	RO			
P07.91	Actual speed loop integral gain	-	-	-	-	-	RO			
P07.92	Actual position loop proportional gain	-	-	-	-	-	RO			

8.1.1 Current loop PI gain adjustment

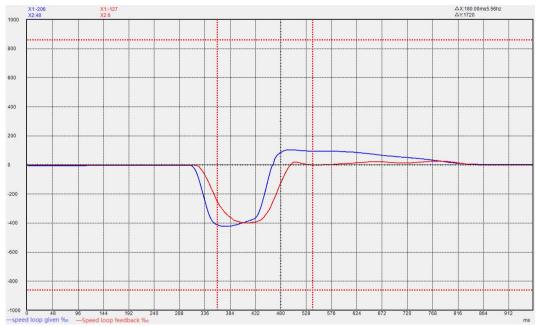

When the proportional gain of the current loop is too large, the motor will make a rattling sound, and the torque current feedback has high frequency oscillation, which often reports overcurrent. As shown in the picture below. (The more obvious is the current sound)

If the current loop proportional gain is too small, the motor current response is slow, and the output is not enough in the process of rapid acceleration and deceleration.

When the current loop integral gain is too large, the torque current is prone to low frequency oscillation, and overcurrent is likely to be reported during acceleration and deceleration.



If the current loop integral gain is too small, the motor current response is slow, and the output is not enough in the process of rapid acceleration and deceleration.



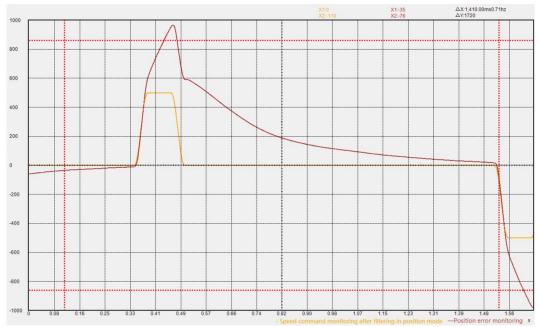
8.1.2 Speed loop PI gain adjustment

When the proportional gain of the speed loop is too large, the motor is prone to whistling, and the feedback of the speed loop has high frequency oscillation.

If the proportional gain of the speed loop is too small, the rigidity of the motor is very weak and the speed cannot follow.

When the integral gain of the speed loop is too large, the rigidity of the motor is enhanced, and the speed is prone to low-frequency fluctuations.

If the integral gain of the speed loop is too small, the rigidity of the motor is very weak and the speed cannot follow.



8.1.3 Position loop P gain adjustment

When the proportional gain of the position loop is too large, the motor speed is unstable and it is easy to shake.

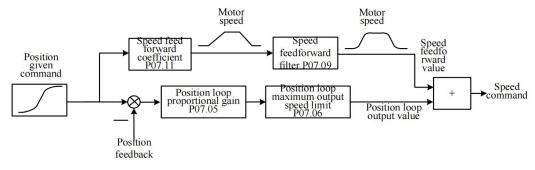
When the proportional gain of the position loop is too small, the position arrives very slowly.

8.1.4 List of parameters that need to be adjusted in different gain gain adjustment modes

Gain adjustment	
mode	Adjustable speed loop/position loop parameters
P07.20=0	P07.03 (Speed loop proportional gain) P07.04 (Speed loop integral gain)
	P07.05 (Position loop proportional gain)
	P07.08 P07.10 (Torque feedforward)
	P07.09 P07.11 (speed feedforward)
P07.20=1	P07.03 P07.04 P07.05P07.08 P07.09 P07.10 P07.11 (First set of gains)
	P07.21 P07.22 P07.23 P07.24 P07.25 P07.26 P07.27 (Second set of gains)
P07.20=2/3	P07.28 (Rigidity level)
	P07.29 (ratio of load inertia)
	P07.08 P07.10 P07.41 (Torque feedforward)
	P07.09 P07.11 (speed feedforward)
P07.20=4	P07.29 (ratio of load inertia)
	P07.03 (speed loop bandwidth) P07.04 (Speed loop integral gain)
	P07.05 (position loop bandwidth)
	P07.08 P07.10 P07.41 (Torque feedforward)
	P07.09 P07.11 (speed feedforward)
P07.20=5	P07.78 (No need to adjust parameters)
	P07.11 P07.09 (speed feedforward)

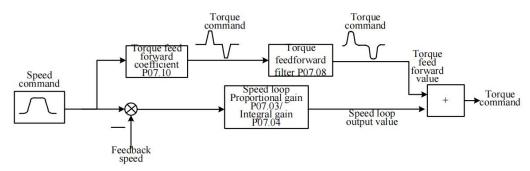
P07.20=0 or P07.20=4, these two modes have the highest adjustability, and the performance that can be adjusted is also the best, which requires a higher degree of user expertise. P07.20=5 This mode has the lowest adjustability and can only meet the general application requirements, and has low requirements for the user's professional level. P07.20=2 is used for Fn006 single parameter self-adjustment.

P07.11 sets the speed feedforward coefficient. If the system requires the follow-up error to be 0, that is, the position error needs to converge to 0 at constant speed, then the value needs to be set to 100.0%. Under normal circumstances, it is sufficient to set it to 50.0%.


After self-learning the rigidity level through Fn006, if further fine-tuning is required, the bandwidth parameter corresponding to the rigidity level at this time can be set to P07.03, P07.04, P07.05, and P07.20 is set to 4, and then further Adjust P07.03-P07.05 for fine adjustment. When the rigidity level is converted into the corresponding speed loop bandwidth, integral gain, position loop when P07.20=4

Bandwidth is shown in the table below.

Rigidity level P07.28	Speed loop bandwidth (rad/s) P07.03	Speed loop integral gain P07.04	Position Loop Bandwidth (rad/s) P07.05	Rigidity level P07.28	Speed loop bandwidth (rad/s) P07.03	Speed loop integral gain P07.04	Position Loop Bandwidth (rad/s) P07.05
0	9	1	2	16	314	31	62
1	12	1	2	17	376	38	75
2	15	2	3	18	471	47	94
3	18	2	4	19	562	56	112
4	22	2	4	20	722	72	144
5	28	3	6	21	879	88	176
6	38	4	8	22	1067	106	213
7	47	5	9	23	1318	131	263
8	57	6	11	24	1570	157	314
9	69	7	14	25	1758	175	351
10	88	8	17	26	1964	196	392
11	113	11	23	27	2135	213	427
12	157	16	31	28	2323	232	464
13	188	19	38	29	2512	251	502
14	219	22	44	30	2826	282	565
15	251	25	50	31	3140	314	628


8.2 Feedforward gain adjustment

8.2.1 speed feedforward

Speed feedforward refers to the mathematical operation of the given position command to obtain the speed required by the motor, which is directly given to the speed loop. As shown in the figure above, the position command is input into the servo, and it is directly converted into the speed required by the motor. After filtering, it is superimposed on the speed command. Generally speaking, the speed feedforward coefficient is directly set to 50%, and the speed feedforward filter value is set according to the inertia, generally set to 0-20ms. The maximum output speed limit of the position loop means that the output of the position loop is limited within plus or minus percent P07.06. When the speed feedforward is set to 100%, the position error can converge to 0 when the speed is constant. When it is less than 100%, the position error will occur when the motor is moving.

8.2.2 Torque feedforward

Torque feedforward refers to the mathematical operation of the given speed command, combined with the load inertia, to obtain the torque that the motor needs to output, and directly superimpose it into the torque command. As shown in the figure above, the speed command is input into the servo, and is directly converted into the torque required by the motor according to the torque feedforward coefficient. After filtering, it is superimposed on the torque command. Generally speaking, the torque feedforward coefficient is determined by the load inertia. The larger the load inertia is, the larger the value will be. This value can be obtained through Fn007 to learn the habit. The torque feedforward filter is also determined by the load inertia, which is generally set to 5-20ms.

When P07.20=0 or 1, the torque feedforward coefficient is equal to the value set by P07.10. When P07.20=2 or 3 or 4, the torque feedforward coefficient adopts the value set by P07.10*P07.41/100. When P07.20=5, the torque feedforward is invalid.

8.3 Filter time adjustment

There are three filter times related to loop control, one is the torque filter time. Under normal circumstances, the torque filter is set to a low-pass filter (P07.12=0). At this time, the larger the torque filter time constant P07.13, the smoother the torque command, which can reduce the high-frequency noise of the motor and bring about The side effect is easy to produce low frequency vibration. This value needs to be increased when the inertia is large.

The second is the speed feedforward filter time. When in position mode, if the position command pulse frequency is low, and the position command filter parameters P03.06 and P03.07 are both 0, the speed feedforward filter needs to be added. It can reduce the speed pulsation of the position command and reduce the noise of the motor. The speed feedforward filter time P07.09 is generally set at about 0-20.

The third one is the torque feedforward filter time P07.08. When there are too many high-frequency components of the torque command, this value needs to be increased, generally set at around 5-20.

8.4 Load torque compensation function

VC310 servo provides 3 kinds of load torque compensation modes, and 3 kinds of compensation modes are set by P07.50. When P07.50 is set to 0, the load torque compensation is derived from the fixed value of P07.53. When P07.50 is set to 1, the servo automatically observes the load torque value according to the relevant variables (focusing on stability). When P07.50 is set to 2, the servo automatically observes the load torque value according to the relevant variables (focusing on the response), and then to compensate.

Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method			
P07.50	Torque Compensation Mode	0~2	-	anytime	Immediately	0	RW			
	1-Automatic compensation	0-Torque compensation is derived from the fixed value P07.53 1-Automatic compensation (focus on stability, adjust P07.43, P07.54, P07.51, P07.52) 2-Automatic compensation (focus on response, adjust P07.43, P07.54)								
P07.43	Torque compensation gain 1	10~1000	-	anytime	Immediately	100	RW			
P07.89	Torque compensation gain 2	10~1000	-	anytime	Immediately	100	RW			
P07.51	Torque Compensation Frequency Compensation	-1000.0~10 00.0	%	anytime	Immediately	0	RW			
P07.52	Torque Compensation Inertia Compensation	1~1000	-	anytime	Immediately	100	RW			
P07.53	Fixed torque compensation value	-3276.7~32 76.7	%	anytime	Immediately	0	RW			
P07.54	Torque Compensation Percentage	0~100	%	anytime	Immediately	100%	RW			
P07.93	Final calculated torque compensation value	-	%	-	-	0	RO			

8.5 Mechanical resonance suppression function

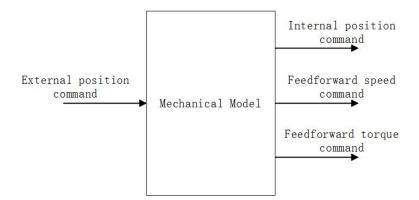
If the mechanical characteristics of the equipment have a resonance point at a certain frequency, when the gain is increased, it may cause the motor to resonate, and the resonance frequency is generally above 200Hz. In this case, the servo notch filter + torque low-pass filter can be used to solve the problem. The servo provides 4 sets of notch filters (acting on the position loop) and a set of torque low-pass filters to suppress the resonance signal. When P07.12 is set to 0, a low-pass filter is used alone to suppress resonance. When P07.12 is set to 1, a notch filter is used alone to suppress resonance. When P07.12 is set to 3, a low-pass filter and a notch filter are used for resonance suppression. When P07.12 is set to 4, once the servo detects oscillation greater than 200Hz, it will automatically turn on a low-pass filter and a notch filter to suppress the resonance. The vibration detection threshold is set by P07.38. The smaller the value is, the more sensitive it is to vibration and the easier it is to detect vibration. When high-frequency mechanical resonance occurs, it is preferred to use the method of automatically inputting the notch filter (P07.12 is set to 4). If it cannot be solved, P07.13-P07.19 and P07.44-P07.49 can be manually set.

	d parameters are as follow						
Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method
P07.12	Torque filter type 0-low pass filtering 1-notch filter 2-No filtering 3-Low pass and notch cascade 4-Automatic calculation of filter parameters	0~4	-	anytime	Immediately	0	RW
P07.13	Torque low-pass filter time constant	0~327.67	ms	anytime	Immediately	0.80	RW
P07.14	The frequency of notch filter 1, when it is 0, the notch filter is invalid	0~32767	Hz	anytime	Immediately	0	RW
P07.15	notch filter 1 depth	0~100.0	%	anytime	Immediately	10.0	RW
P07.16	notch filter 1 width	0~1000.0	%	anytime	Immediately	50.0	RW
P07.17	The frequency of notch filter 2, when it is 0, the notch filter is invalid	0~32767	Hz	anytime	Immediately	0	RW
P07.18	notch filter 2 depth	0~100.0	%	anytime	Immediately	10.0	RW
P07.19	notch filter 2 width	0~1000.0	%	anytime	Immediately	50.0	RW
P07.44	The frequency of notch	0~32767	HZ	anytime	Immediately	0	RW

	1						
	filter 3, when it is 0, the						
	notch filter is invalid						
P07.45	notch filter 3 depth	0~100.0	%	anytime	Immediately	10.0	RW
P07.46	notch filter 3 width	0~1000.0	%	anytime	Immediately	50.0	RW
	The frequency of notch			anytime	Immediately		
P07.47	filter 4, when it is 0, the	0~32767	HZ			0	RW
	notch filter is invalid						
P07.48	notch filter 4 depth	0~100.0	%	anytime	Immediately	10.0	RW
P07.49	notch filter 4 width	0~1000.0	%	anytime	Immediately	50.0	RW

8.6 Low frequency vibration suppression

When the motor drives a large inertia flexible load for high-speed positioning, if there is continuous low-frequency vibration below 50Hz. It can be processed by the low frequency vibration suppression function of the servo and the position command filter function. The servo provides 1 set of low frequency suppression notch filter (acting on the speed loop), 1 set of position command notch filter and 1 set of position command low pass filter to deal with the relevant low frequency vibration. The frequency of the low frequency resonance can be analyzed by VECObserver.

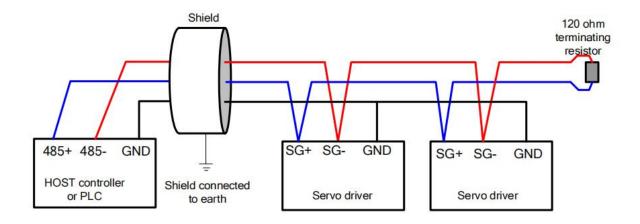

It should be noted that if the filter of the position command is increased, the motor motion will lag, thereby increasing the position error during tracking, and it may report that the position error is too large Er203. At this time, the position error threshold needs to be appropriately increased.

Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method
P07.55	The frequency of the notch filter for low frequency suppression. When it is 0, the notch filter is invalid.	0~100.0	-	anytime	Immediatel y	0	RW
P07.56	Low Frequency Rejection Notch Width	0~1000.0	-	anytime	Immediatel y	50.0	RW
P07.57	Low Frequency Rejection Notch Depth	0~100.0	-	anytime	Immediatel y	10.0	RW
P07.58	Position command notch filter frequency, when it is 0, the notch filter is	0~100.0	-	anytime	Immediatel y	0	RW

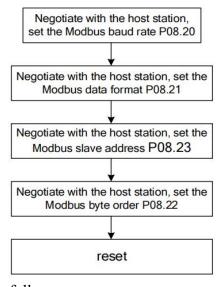
	invalid						
P07.59	Position command notch	0~1000.0		anytime	Immediatel	0.0	RW
P07.39	filter width	-			у	0.0	KW
P07.60	Position command notch	0~100.0		anytime	Immediatel	0.0	RW
107.00	filter depth		0~100.0		у	0.0	ICVV
P03.07	Position given low pass	0~100.0		anytime	Immediatel	10	RW
103.07	filter time constant	0~100.0	-		у	10	KW
	Excessive position error			anytime	Immediatel		
P03.19	value, when set to 0,	0~2147483			у	10	RW
103.19	there is no excessive	648				10	IX W
	position error protection						

8.7 Model Predictive Control Capability

Model predictive control means that the system directly calculates the new position command, speed command, and torque command feed forward to the position loop, speed loop, and torque loop according to the external position command, combined with the built-in mechanical model.


Under position mode control, the servo presets 4 model predictive control methods, namely single inertia model predictive control, dual inertia model predictive control, single inertia model predictive control (no model predictive position command filtering), dual inertia model predictive control (model-free predicted position command filtering). Single inertia system refers to the rigid connection between the motor and the load, such as screw connection. The dual inertia system refers to the connection between the motor and the load with less rigidity, such as the pulley connection. The 4 model control modes are selected by the first bit of P07.61. The factory default does not use model predictive control, but uses ordinary feedforward control. When the model predictive control is enabled, the ordinary speed feedforward P07.10 and torque feedforward P07.11 are invalid. The relevant parameters of model predictive control are as follows.

Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method
	Advanced control	0.0~3276.7	-	anytime	Immediately	0	RW
	function selection						
	AAA.B format						
	When AAA=0, the common	n feedforward	control is a	dopted, an	d the feedforv	vard is contr	olled by
	P07.10, P07.11, etc.	. 11 1		1. 1			
P07.61	When AAA=1, single-inert	-					
P07.61	When AAA=2, dual inertia When AAA=3, single-inert	-		•		agition com	mand
	filtering) is used.	ia model predi	ctive contre	n (no mou	er predictive p	JOSHIOII COIII	ilialiu
		ertia model pre	dictive cont	trol (witho	ut model pred	lictive nositi	on
	When AAA=4, the dual-inertia model predictive control (without model predictive position command filtering) is used.					OII	
	When B=0, there is no continuous vibration suppression function.						
	When B=1, the continuous						
P07.62	Model prediction gain	1.0~2000.0	-	anytime	Immediately	50.0	RW
P07.63	Model Prediction Compensation	50.0~200.0	-	anytime	Immediately	100.0	RW
P07.64	Model predicts positive gain	0~1000.0	-	anytime	Immediately	100.0	RW
P07.65	Model predicts inverse gain	0~1000.0		anytime	Immediately	100.0	RW
	Model predicts			anytime	Immediately		
P07.66	suppression frequency 1	1.0~250.0	-			50.0	RW
205 5-	Model predicts			anytime	Immediately		
P07.67	suppression frequency 2	1.0~250.0				70.0	RW
P07.68	Model predicts	0~1000.0		anytime	Immediately	100.0	RW
FU/.U8	feedforward velocity	0~1000.0				100.0	IX VV
P07.69	Model predicts 2 gain	1.0~2000.0	-	anytime	Immediately	50.0	RW
P07.70	Model Prediction 2 Compensation	50.0~200.0	-	anytime	Immediately	100.0	RW


Chapter 9 Modbus Communication

9.1 Modbus wiring requirement

See the diagram below for wiring.

9.2 Modbus parameter setting steps

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P08.20	Modbus Baud Rate Register 0-4800 1-9600 2-19200 3-38400 4-57600 5-115200	0~5	bps	Set the communicati on rate between the driver and the host computer. The communicati on rate of the servo drive must be consistent with the communicati on rate of the host computer, otherwise the communicati on cannot be performed.	anytime	Immediately	1	RW
P08.21	Modbus data format registers 0-No parity, 2 stop bits 1-No parity, 1 stop bit 2-Even parity, 1 stop bit 3-Odd parity, 1 stop bit	0~3	-	Set the data verification method when the drive communicate s with the upper computer.	anytime	Immediately	1	RW
P08.22	32-bit address access high and low byte order 0-When accessing a 32-bit address, the high-order 16 bits are first 1-When accessing a	0~1	-	Sets the transmission format for 32-bit data when using MODBUS communicati on.	anytime	Immediately	1	RW

VECTOR

	32-bit address, the lower 16 bits are in front							
P08.23	Modbus Slave Address	1~255	_	Set Modbus	anytime	Immediately	1	RW
				slave address.	-			
				An error code				
				is displayed				
P08.24	Modbus fault register	_	_	when a	_	_	_	RO
	8			communicati				
				on failure				
				occurs.				
				Displays the				
	The number of bytes			number of				
P08.25	in the transmit FIFO	-	-	bytes in the	-	-	-	RO
	buffer			transmit FIFO				
				buffer.				
				Set the delay				
				from the				
				response to				
				the host				
	MODBUS response			computer				
P08.27	delay character period	0~32767	-	after the slave	anytime	Immediately	0	RW
	deray character period			machine				
				receives the				
				command				
				from the host				
				computer.				
				Sets the				
				lengthening				
P08.28	MODBUS sampling	0~32767	500u	time of the	anytime	Immediately	0	RW
100.20	period lengthened	0~32101	s	MODBUS	anythic	ininediately		IX VV
				sampling				
				period.				

9.3 Function codes supported by Modbus

The servo drive only supports communication in Modbus RTU format. The function codes of the internally implemented Modbus protocol stack are shown in the table below.

Function code	Function Description
(decimal)	Tunction bescription

1	Read bits	
2	Read bits	
3	Read registers	
4	Read registers	
5	Write Bit	
6	Write 16-bit registers	
16	Write 32-bit registers	

9.3.1 Function code 1 or function code 2 (read bit)

The servo provides the following address for the upper computer to read. It should be noted that the bit address of most of the host computers needs to be set to "servo internal bit address + 1"; if it is a macro-defined communication method, generally directly set "servo internal bit address". The meanings of the bit addresses in each servo are as follows.

Servo internal	Meaning of readout status
address	
12	Valid state of DO1
13	Valid state of DO2
14	Valid state of DO3
15	Valid state of DO4
16	Valid state of DO5
17	Valid state of DO6
141	OUTFn.1 Drive is enabled
142	OUTFn.2 Speed arrives
143	OUTFn.3 slowing down
144	OUTFn.4 speeding up
145	OUTFn.5 zero speed
146	OUTFn.6 overspeed
147	OUTFn.7 forward rotation
148	OUTFn.8 Reverse rotation
149	OUTFn.9 fault output
150	OUTFn.10 In the forward speed limit in the torque mode
151	OUTFn.11 Negative speed limit in torque mode
152	OUTFn.12 Speed limit in torque mode
153	OUTFn.13 Positioning completion output
154	OUTFn.14 Positioning close to the output
155	OUTFn.15 return home completed output
156	OUTFn.16 Position error too large output
157	OUTFn.17 Interrupt fixed length completion output
158	OUTFn.18 Software limit output
159	OUTFn.19 feeding output
160	OUTFn.20 feed output

161	OUTFn.21 Roll diameter is being calculated
162	OUTFn.22 The roll diameter reaches the output
163	OUTFn.23 length arrives at output
164	OUTFn.24 Holding brake output
165	OUTFn.25 Input command is valid
166	OUTFn.26 Often OFF
167	OUTFn.27 Always ON
168	OUTFn.28 Torque limit output
169	OUTFn.29 Torque arrival
170	OUTFn.30 Internal trigger state
171	OUTFn.31 Internal counter count arrives
172	OUTFn.32 Consistent speed
173	OUTFn.33 Pulse position command is zero output
174	OUTFn.34 Roll diameter reaches 2 outputs

The above bits can be realized through the read bit function in MODBUS, that is, setting the function code of the MODBUS data frame to 1 or 2. The query information sent by the Modbus master to read the bit is as follows. The query information specifies the slave address, bit address and number of bits to be read. For example, the master station queries the slave station address as 0x01, 0x06 bits starting from its internal address 0x01.

Query information contains the domain	Example (hex)
Slave address	0x01
function code	0x01
Need to query the upper 8 bits of the address	0x00
Need to query the lower 8 bits of the address	0x01
The number of bits queried is the upper 8 bits	0x00
The number of bits to be queried is the lower 8 bits	0x06
CRC16 check result lower 8 bits	0xED
CRC16 check result high 8 bits	0xC8

The data field in the response information of the Modbus slave station contains the status of the bit corresponding to the query address. The data of the low address is placed in the low position, 1 means valid, 0 means invalid.

If the number of coils returned is not a multiple of 8, the remaining bits in the last data byte to the highest bit of the byte are filled with zeros, and the byte number field indicates the number of bytes of all data. The result of replying to the master read bit is as follows.

Fields included in the response message	Example (hex)
Slave address	0x01
function code	0x01
number of bytes	0x01
data (bits 5-0)	0x00
CRC16 check result lower 8 bits	0x51
CRC16 check result high 8 bits	0x88

9.3.2 Function code 3 or function code 4 (read register)

All Pxx.yy parameters of the servo drive can be read, and the corresponding parameter register address is xx*100+yy. The parameter address of most host computers needs to be set to "parameter register address + 1"; if it is a macro-defined communication method, generally directly set "parameter register address". The query information sent by the Modbus master to read the register is as follows. The query information specifies the slave address, register address and number of registers to be read. For example, the master station queries the slave station address 0x01, 0x02 registers starting from its internal parameter address 0x01.

Fields included in the response message	Example (hex)
Slave address	0x01
function code	0x03
Need to query the upper 8 bits of the address	0x00
Need to query the lower 8 bits of the address	0x01
The number of high-order 8-bit registers to be	0x00
queried	
The lower 8 bits of the number of registers	0x02
queried	
The lower 8 bits of the CRC16 check result	0x95
CRC16 check result high 8 bits	0xCB

The servo drive responds to the master station and reads the register information as follows.

Fields included in the response message	Example (hex)	
Slave address	0x01	
Function code 0x03		
Number of bytes	0x04	
Data (high 8 bits of register 1)	0x00	
Data (lower 8 bits of register 1)	0x1C	
Data (higher 8 bits of register 2)	0x0B	
Data (lower 8 bits of register 2)	Data (lower 8 bits of register 2) 0xB8	
The lower 8 bits of the CRC16 check result	0x3C	
The upper 8 bits of the CRC16 check result	0xB7	

9.3.3 Function code 5 (write bit)

The following address in the servo can be written by the host computer. Their corresponding meanings are as follows.

Addresses		
0	Writing 1 is forcibly valid for DI1	1 valid
1	Writing 1 is forcibly valid for DI2	1 valid
2	Writing 1 is forcibly valid for DI3	1 valid
3	Writing 1 is forcibly valid for DI4	1 valid
4	Writing 1 is forcibly valid for DI5	1 valid
5	Writing 1 is forcibly valid for DI6	1 valid
6	Writing 1 is forcibly valid for DI7	1 valid
7	Writing 1 is forcibly valid for DI8	1 valid
8	Writing 1 is forcibly valid for DI9	1 valid
9	Writing 1 is forcibly valid for DI10	1 valid
41	INFn.1 Enable the servo	1 valid
42	INFn.2 Resets the servo	0->1 effective
43	INFn.03 Torque AB selector switch	1 valid
44	INFn.04 Torque reverse switch	1 valid
45	INFn.05 Forward torque limit selection	1 valid
46	INFn.06 Reverse torque limit selection	1 valid
47	INFn.07 Forward speed limit selection	1 valid
48	INFn.08 Reverse speed limit selection	1 valid
49	INFn.09 Forward jog	1 valid
50	INFn.10 reverse jog	1 valid
51	INFn.11 Speed given reverse	1 valid
52	INFn.12 main speed AB selection	1 valid
53	INFn.13 Speed stop input	1 valid
54	INFn.14 Download ARM program	0->1 effective
55	INFn.15 clear encoder position counter	0->1 effective
56	INFn.16 Zero fixed in speed mode	1 valid
57	INFn.17 Multi-stage speed speed selection switch 0	1 valid
58	INFn.18 Multi-stage speed speed selection switch 1	1 valid
59	INFn.19 Multi-stage speed speed selection switch 2	1 valid
60	INFn.20 Multi-stage speed speed selection switch 3	1 valid
61	INFn.21 Position command prohibited	1 valid
62	INFn.22 Position command reverse	1 valid
63	INFn.23 Pulse command prohibited	1 valid
64	INFn.24 Electronic gear ratio changeover switch 1	1 valid
65	INFn.25 Position error clear	Dependent on P03.21
66	INFn.26 Position mode origin return command	0->1 effective
67	INFn.27 Multi-segment position trigger start and stop signal	0->1 trigger to start
		multi-segment position,
		1->0 trigger stop multi-segment
		position

68	INFn.28 Multi-segment position position selector switch 0	1 valid		
69	INFn.29 Multi-segment position position selector switch 1	1 valid		
70	INFn.30 Multi-segment position position selector switch 2	1 valid		
71	INFn.31 Multi-segment position position selector switch 3	1 valid		
72	INFn.32 Position direction in multi-segment position mode	1 valid		
73	INFn.33 Reserved	-		
74	INFn.34 zero return origin signal input	Depends on homing mode		
75	XY pulse tracking and multi-segment position switching in INFn.35 position mode	1 valid		
76	INFn.36 control mode switching switch 0	1 valid		
77	INFn.37 control mode switching switch 1	1 valid		
78	INFn.38 Enable interrupt fixed-length function	1 valid		
79	INFn.39 Release Interrupt Fixed Length	1 valid		
80	INFn.40 trigger interrupt fixed-length input signal	0->1 effective		
81	INFn.41 The first set of the second set of gain selection switches	1 valid		
82	INFn.42 reset fault	1 valid		
83	INFn.43 positive limit switch	1 valid		
84	INFn.44 reverse limit switch	1 valid		
85	1 valid			
86	INFn.46 FPGA Down loader	0->1 effective		
87	87 INFn.47 Tension compensation direction			
88	1 valid			
89	1 valid			
90	INFn.50 prohibits the calculation of roll diameter	1 valid		
91	INFn.51 Replace roll	1 valid		
92	INFn.52 initial roll diameter switch	1 valid		
93	INFn.53 clears the feed length	1 valid		
94	INFn.54 Force fast tightening	1 valid		
95	INFn.55 Tension compensation is prohibited in closed-loop speed mode	1 valid		
96	INFn.56 electronic gear ratio switch 2	1 valid		
97	INFn.57 Motor overheating	1 valid		
98	INFn.58 Emergency stop input	1 valid		
99	INFn.59 internal flip-flop reset	0->1 effective		
100	INFn.60 sets internal flip-flop	0->1 effective		
101	INFn.61 internal counter count pulse	0->1 effective		
102	INFn.62 clears the internal counter	1 valid		

103	INFn.63 Speed mode UPDOWN mode UP signal	1 valid
104	INFn.64 Speed mode UPDOWN mode DOWN signal	1 valid
106	INFn.66 enables speed stacking	1 valid
107	INFn.67 Correct the zero drift of all AI	1->0 effective
108	INFn.68 Tension control closed-loop speed/torque mode DI switching	1 valid

The ON/OFF state of the requested bit is specified by a constant in the query data area, the FF00H value request bit is in the ON state, the 0000H value request bit is in the OFF state, and other values are invalid for the bit and have no effect.

The information sent by the master station to write the bit includes the address written to the servo drive, the bit address and the written data. For example, the master station writes the slave station address as 0x01, and the bit starting from its internal address 0x01 is set to 1.

The area included in the information sent by the master station	Example (hex)
Slave address	0x01
function code	0x05
upper 8 bits of bit address	0x00
lower 8 bits of bit address	0x01
Write the upper 8 bits of the data	0xFF
Write the lower 8 bits of the data	0x00
The lower 8 bits of the CRC16 check result	0xDD
The upper 8 bits of the CRC16 check result	0xFA

The reply information of the servo driver is as follows.

The area included in the servo reply message	Example (hex)
Slave address	0x01
function code	0x05
upper 8 bits of bit address	0x00
lower 8 bits of bit address	0x01
Write the upper 8 bits of the data	0xFF
Write the lower 8 bits of the data	0x00
The lower 8 bits of the CRC16 check result	0xDD
The upper 8 bits of the CRC16 check result	0xFA

9.3.4 Function code 6 (write single word register)

All the readable and writable parameters of Pxx.yy of the servo drive can be written through Modbus, and the corresponding parameter register address is xx*100+yy. The

parameter address of most host computers needs to be set to "parameter register address + 1"; if it is a macro-defined communication method, generally directly set "parameter register address". The information sent by the Modbus master to write to the single-word register is as follows. The message specifies the slave address, register address and register data to be written. For example, the master station writes the register whose slave address is 0x01 and the internal address is 0x02, and the write value is 3000.

The area included in the information sent by the master station	Example (hex)
Slave address	0x01
function code	0x06
Need to write to the upper 8 bits of the address	0x00
Need to write the lower 8 bits of the address	0x02
Need to write the upper 8 bits of the data	0x0B
Need to write the lower 8 bits of data	0xB8
The lower 8 bits of the CRC16 check result	0x2F
The upper 8 bits of the CRC16 check result	0x48

The servo drive responds to the master station to write a single register information as follows.

The area that the response message contains	Example (hex)
Slave address	0x01
function code	0x06
Need to write to the upper 8 bits of the address	0x00
Need to write the lower 8 bits of the address	0x02
Need to write the upper 8 bits of the data	0x0B
Need to write the lower 8 bits of data	0xB8
The lower 8 bits of the CRC16 check result	0x2F
The upper 8 bits of the CRC16 check result	0x48

9.3.5 Function code 16 (write double word register)

All readable and writable double-word parameters of Pxx.yy of the servo drive can be written through Modbus, and the corresponding parameter register address is xx*100+yy. The parameter address of most host computers needs to be set to "parameter register address + 1"; if it is a macro-defined communication method, generally directly set "parameter register address". The information sent by the Modbus master to write to the double word register is as follows. The message specifies the slave address, register address, number of registers and number of bytes of data to be written. For example, the master station writes the register whose slave station address is 0x01 and the internal address is 0x0B, and the write value is 10000.

The area included in the information sent by the master station	Example (hex)
Slave address	0x01
function code	0x10
Need to write to the upper 8 bits of the address	0x00
Need to write the lower 8 bits of the address	0x0B
The upper 8 bits of the number of registers that	0x00
need to be written	
The lower 8 bits of the number of registers that	0x02
need to be written	
number of bytes of data	0x04
The upper 8 bits of the data (high/low word)	0x00
need to be written	
The lower 8 bits of the data (high/low word)	0x00
need to be written	
The upper 8 bits of the data (low/high word) to	0x27
be written	
The lower 8 bits of the data (low/high word) to	0x10
be written	
The lower 8 bits of the CRC16 check result	0xA8
The upper 8 bits of the CRC16 check result	0x20

The servo drive responds to the information written by the master station to the double word register as follows.

The area that the response message	Example (hex)
contains	
Slave address	0x01
function code	0x10
Need to write to the upper 8 bits of the address	0x00
Need to write the lower 8 bits of the address	0x0B
The upper 8 bits of the number of registers that	0x00
need to be written	
The lower 8 bits of the number of registers that	0x02
need to be written	
The lower 8 bits of the CRC16 check result	0x30
The upper 8 bits of the CRC16 check result	0x0A

Note: When writing a double-word register, the data in the data field of the information sent by the master station can be high-order first or low-order first, depending on the setting of P08.22.

Chapter 10 Parameter List

function code	Summary of parameter groups
group	
Group P00	Motor and Encoder Parameters
Group P01	Drive hardware parameters
Group P02	Basic control parameters
Group P03	position mode parameter
Group P04	Parameters related to the speed mode
Group P05	Related parameters of torque mode
Group P06	DIDO AIAO's related parameters
Group P07	loop control parameters
Group P08	Communication parameters
Group P09	Advanced debugging parameters
Group P10	Fail safe parameters
Group P11	Multi-speed parameters
Group P12	Virtual DI DO parameters
Group P13	Multi-segment position parameters

• Explanation of parameter setting method and effective method:

Zero speed setting: This parameter can only be modified when the motor is in zero speed state.

Stop to setting: Indicates that this parameter is read-only when enabled, and can only be modified when disabled.

anytime: Indicates that this parameter can be set at any time after power-on.

Immediately: Indicates that the parameter can be modified when the machine is running, that is, such parameters can be modified in any state, and will take effect immediately after the modification is completed.

Reset effective: Indicates that after the parameter is modified, the drive needs to be reset to take effect.

10.1 P00 group parameters - motor and encoder parameters

P00.01	Name	Rated current of motor		Set Moment	Stop to set	Access	RW		
P00.01	Range	0~3276.7	Unit	A	active moment	Immediately	default	6.0	
This para	This parameter is password protected.								

P00.02	Name	Rated speed of the motor	Set	Stop to set	Access	RW	
--------	------	--------------------------	-----	-------------	--------	----	--

				method					
Range	1~32767	Unit	rpm	active	Immediately	default	3000		
	1~32767	Unit	Unit	Unit	трш	moment	miniculately	derauit	

P00.03	Name	Maximum speed of the motor		Set method	Stop to set	Access	RW	
	Range	1~32767	1~32767 Unit rpm		active moment	Immediately	default	3000

200.04	Name	The direction of motor rotation			Set method	Stop to set	Access	RW
P00.04	Range	0~1	Unit	-	active moment	Immediately	default	1

Setting	Direction of rotation									
0	The positive speed of the motor is defined as the clockwise									
	rotation direction of the motor (looking at the motor shaft)									
1	The positive speed of the motor is defined as the									
	counterclockwise rotation direction of the motor (looking at the									
	motor shaft)									

After setting this parameter, the encoder must be re-learned before it can run. Please connect the UVW power cable of the motor according to the manufacturer's standard, otherwise the rotation direction of the motor may be reversed.

P00.05	Name	Number of pole pairs of the motor			Set method	Stop to set	Access	RW
P00.03	Range	1~32767	Unit	-	active moment	Immediately	default	4

D00.06	Name	Motor ID			Set method	Stop to set	Access	RW
P00.06	Range	1~32767	Unit	-	active moment	Immediately	default	0

D00 00	N	ame	Type of n	notor enc	oder	Set method	Stop to set	Acc	cess	RW		
P00.08	R	ange	0~8	Unit	-	active moment	Immediately	def	ault	0		
		Se	etting		Ту	pe of motor	encoder					
			0	Incremental encoder								
			1	Tan	Tamagawa 17-bit absolute value encoder							
			2	N	Nikon 24-bit absolute value encoder							
			3		reserve							
			4	Ro	Rotary encoder to incremental encoder							
			5		Wire-sa	ving increme	ental encoder					
			6	Tan	nagawa	23-bit absolu	ite value encode	er				
			7	Tamagawa single-turn 23-bit absolute encoder								
			8	Tamagawa single-turn 17-bit absolute encoder								
			9	Incremental encoder ABZ no UVW								
			10			12-bit SPI res	solver					
							_					
P00.09	N	lame	Motor en	coder har er settings		Set method	Stop to set	Ac	ecess	RW		
100.09	R	ange	1~32767	Unit	20ns	active moment	Immediately	de	fault	20		
			coder sot	ftware	Set							

P00.10	Name		Notor encoder software filter time		Set method	Stop to set	Access	RW
	Range	0~32767 Unit ms		active moment	Immediately	default	5	

DO0 11	Name	Motor encoder resolution			Set method	Stop to set	Access	RW
P00.11	Range	100~ 2147483647	Unit	-	active moment	Immediately	default	100 00

	Name Motor encoder position (encoder unit)			Set method	-	Access	RO	
P00.13	Range	-	Unit	-	active moment	-	default	-

P00 15	Name	The detected encoder resolution			Set method	-	Access	RO
P00.15	Range	0~32767	Unit	-	active moment	-	default	-

	Nama	Motor encoder Hall code			Set		Aggagg	RO
P00.17 Name		value			method	-	Access	KO
P00.17	Range -		Unit	-	active	-	default	-
					moment			

	Name	Absolute va		em	Set method	Stop to set	Access	RW
P00.18	Range	0-Increment 1-absolute value	Unit	ı	active moment	Take effect after power on	default	0

Name	Motor encoder speed sampling period		Set method	Stop to set	Access	RW	
Range	0-7	Unit	-	active	Take effect	default	0
				moment	after power		
					on		

0- incremental 250us, Tamagawa 300us, Nikon 200us;

P00.19 | 1- incremental 500us, Tamagawa 360us, Nikon 240us;

- 2- incremental 750us, Tamagawa 420us, Nikon 280us;
- 3- incremental 1000us , Tamagawa 480us , Nikon 320us;
- 4- incremental 50us, Tamagawa 60us, Nikon 40us;
- 5- incremental 100us, Tamagawa 120us, Nikon 80us;
- 6- incremental 150us, Tamagawa 180us, Nikon 120us;
- 7- incremental 200us, Tamagawa 240us, Nikon 160us

	Name	Stator resistance			Set method	Stop to set	Access	RW
P00.20	Range	0~327.67	Unit	Ω	active moment	Take effect after power on	default	-

	Name	ame D- axis inductance			Set method	Stop to set	Access	RW
P00.21	Range	0~327.67	Unit	mН	active moment	Take effect after power on	default	-

	Name	;	Q- axi	s induc	tance	Set method	Stop to set	Access	RW
P00.22	Range	•	0~327.67	Unit	mH	active moment	Take effect after power on	default	-
				•					'
	Name	;	Line back electromotive force			Set method	Stop to set	Access	RW
P00.23	Range	•	0~3276.7	Uni t	V/ krpm	active moment	Take effect after power on	default	-
				'	'				•
	Name	;	Motor p	eak cur		Set method	Stop to set	Access	RW
P00.24	Range	2	0~3276.7 Unit %		active moment	Take effect after power on	default	-	
This para	meter is	pass	sword protected.						
	Name	;	Motor r	ated to	rque	Set method	Stop to set	Access	RW
P00.25	Range		0~21474 836.47	Unit	NM	active moment	Take effect after power on	default	-
	Name	;	Motor	rotor in	ertia	Set method	Stop to set	Access	RW
P00.27	Range	÷	0~21474 836.47	Unit	Kgcm ²	active moment	Take effect after power on	default	-
	Name	;	Туре	of mot	or	Set method	Stop to set	Access	RW
P00.29	Range	e	0~2	Unit	-	active moment	Take effect after power on	default	0
			Setting		N	Motor encode	er type		
			0			Synchronous			
			1 Asynchronous motor						
	2			Linear mo	otor				

P00.30	Name		Second e	ncode	r type	Set method	Stop to set	Access	RW
P00.30	Range		0~2	Unit -		active moment	Immediately	default	0
			Setting		S	Second encod	er type		
			0		I	ncremental e	ncoder		
			1		Sing	e-turn absolu	ite encoder		
			2		Mul	i-turn absolu	te encoder		
P00.31	Name		Second end filte	coder l r setti		Set method	Stop to set	Access	RW
P00.31	Range	;	1~32767	Unit	t 20ns	active moment	Immediately	default	20
D00 22	Name		Second en filter tin			Set method	Stop to set	Access	RW
P00.32	Range	;	0~32767	0~32767 Unit ms		active moment	Immediately	default	5
200.00	Name		Second	d enco		Set method	Stop to set	Access	RW
P00.33	Range	2	100~ 214748364	7 U	nit -	active moment	Immediately	default	1000
	Name		Second end (Encod	-		Set method	-	Access	RO
P00.35	Range	;	-	Unit	t -	active moment	-	default	-
	Name		Mechanica lower	l origi r 32 bi		Set method	-	Access	RO
P00.37	Range	:	-	Unit	t -	active moment	-	default	-
	Name		Mechanical zero point offset high 32 bits			Set method	-	Access	RO
P00.39	Range		- Unit -			active moment	-	default	-
						moment			
P00.41	Name	:	Absolute value system fault shielding			Set method	Stop to set	Access	RW

	Range	0~3	Unit	-	active moment	Immediately	default	0
The 0th bit shields the battery alarm; the 1st bit shields the battery failure								

The 0th b	oit shields the	battery aları	m; the 1s	st bit shi	elds the batt	ery fa	ailure		
	Name	Motor in	stantane	ous	Set		_	Access	RO
P00.42	rame	current	percenta	ige	method			7 ICCCSS	RO
1 00.12	Range	_	Unit	%	active		_	default	0
	runge		Cint	, 0	moment				
									1
	Name	Motor in			Set		-	Access	RO
P00.43		power	percenta	ge	method				
	Range	- Unit %			active		-	default	0
		Jan 70			moment				
					Set				
	Name	Average load rate			method		-	Access	RO
P00.44					active				
	Range	-	Cint , o		moment		-	default	0
				moment					
		Maxi	mum mo	tor					
	Name	current percentage in 1s		Set meth	nod	-	Access	RO	
P00.45					active				
	Range	-	Unit	%	momei	nt	-	default	0
				•					
	Name	Maximu	n motor	power	Set meth	nod		Access	RO
P00.46	Name	perce	ntage in	1s	Set men	10u	-	Access	KO
1 00.40	Range	_	Unit	%	active	•	_	default	0
	Runge		Omt	70	momei	nt			
		1					Ι		
	Name	Inductio		stator	Set meth	nod	_	Access	RW
		re	sistance						
Doc 47							Take		
P00.47	T)	0.227.67	TT */	,	active	•	effect	1.0.1	
	Range	0-327.67	Unit	ohm	momen	nt	after	default	0
							power		
							on		
		Induction motor rotor							
	Name resistance		Set meth	nod	-	Access	RW		
P00.48		resistance				Take			
					active	•			

ohm

Range

0-327.67

Unit

active

moment

effect

after

default

0

						power				
						on				
		I				I				
	Name	Total leaka induc	ge induc		Set method	-	Access	RW		
P00.49	Range	0-3276.7	Unit	mH	active moment	Take effect after power on	default	0		
	Name	Induction motor magnetizing inductance			Set method	-	Access	RW		
P00.50	Range	0-3276.7	Unit	mH	active moment	Take effect after power on	default	0		
	Name	Induction from	n motor equency	rated	Set method	-	Access	RW		
P00.51	Range	0-3276.7	Unit	Hz	active moment	Take effect after power on	default	0		
D00.52	Name	Induction	n motor (output	Set method	-	Access	RO		
P00.52	Range	0-3276.7	Unit	NM	active moment	-	default	0		
D00 52	Name	Induction	n motor (output	Set method	-	Access	RO		
P00.53	Range	0-327.67			active moment	-	default	0		
		1		1		1				
P00.54	Name	Induction motor percentage of magnetizing current, unit is the percentage of motor rated current			Set method	-	Access	RW		
	Range	0-3276.7	Unit	%	active	Take	default	0		

	VECTOR SCITES SCIVE diliver inistraction mandar										
						momei	nt	effect after power			
								on			
P00.55	Name	Induction	n motor orque 2	output		Set meth	od	-	Access	RO	
P00.33	Range	0-3276.7	3276.7 Unit			active mome		-	default	0	
	Name		Motor encoder acceleration			Set metho		Stop to set	Access	RW	
P00.57	Range	0-3276.7	rpm/	ms	activ mome		Take effect after power on	default	0		
	Name	Speed W	Vatch Ga	in	m	Set nethod	St	op to set	Access	RW	
P00.58	Range	0-32767	Unit	-		active moment Take effect after power on		er power	default	0	
		•							•		
P00.59	Name	Observati flux linkag n			r	Set nethod	St	op to set	Access	RW	
P00.39	Range	0~1	Unit	-		active noment		ke effect er power on	default	1	
	Setting				erva	tion meth	nod o	f flux			
	Setting		ס			of induct					
	0										
			Compatible with the flux observation algorithm of the								
		old VC servo driver									
1			New flux linkage observation								
				algorithm							
						<u> </u>					

Name P00.60	Name		nable absolute encoder Z offset			Stop to set	Access	RW
		Z onset			method			
F00.60	Range 0~1		Unit	_	active	Take effect	default	0
	Kange	0~1	Oiii	-	moment	after power		

				on			
Setting	En	Enable absolute encoder Z offset					
0	The abs	solute	value enco	der Z point offse	et		
	P00.71	P00.71 is invalid, and the encoder phase					
	will be	will be reset when the encoder is					
	self-lea	self-learning.					
1	Absolu	Absolute encoder Z-point offset P00.71					
	is valid	is valid, and the encoder phase will not					
	be reset	be reset when the encoder is self-learning					

	Name	Perma synchron weakeni		or field	Set method	Stop to set	Access	RW
P00.61	Range	0-50	Unit	%	active moment	Take effect after power on	default	0

	Name	Linear m	otor pole	e pitch	Set method	Stop to set	Access	RW
P00.62	Range	0-3276.7	Unit	0.1mm	active moment	Take effect after power on	default	0

	Name	distance c	on, that i	s, the	Set method	Stop to set	Access	RW
P00.64	Range	0-3276.7	Unit	0.1um	active moment	Take effect after power on	default	0

	Name	Current L Amplitud	•	Ü	Set method	Stop to set	Access	RW
P00.66	Range	0~32767	Unit	-	active moment	Take effect after power on	default	0

A total of 5 bits, ABCDE, when the highest bit A is set to 1, the voltage limit amplitude is not enabled, and when it is set to 0, the voltage limit amplitude is enabled. The B bit is the field weakening regulator KP, the C bit is the field weakening regulator KI, the D bit is to set the limit amplitude of ud, set it to 0-9, representing 10% to 100%, and the E bit sets the multiple of the high-speed phase compensation.

D00 70	Name		JVW pha	ase	Set method	Stop to set	Access	RW
P00.70	Range	0~1 Unit		-	active moment	Immediately	default	1
		Setting		motor UVW phase sequence				
		0			positive sequ	uence		
		1			reverse sequ	ience		

This parameter is password protected and can be obtained by self-learning.

D00 71	Name	Z point offset (encoder unit)			Set method	Stop to set	Access	RW		
P00.71	Range	0~32767	Unit	-	active moment	Immediately	default	0		
The offset of the Z point relative to the magnetic pole. This parameter is password protected.										

D00 72	Name		AB phase se	equence coder	of the	Set method	Stop to set	Access	RW
P00.72	Range	Range 0~1		Unit	-	active moment	Immediately	default	0
			Setting 0		-	se sequence o	of the encoder		
	1				reverse sequ				

This parameter is password protected and can be obtained by self-learning.

P00.73	Name is 1		lall code orrespor	nding	Set method	Stop to set	Access	RW		
	Range	0~1023	Unit	-	active	Immediately	default	425		
					moment					
This parameter is password protected and can be obtained by self-learning.										

P00.74	Name	When the Hall code value is 2, the corresponding electrical angle	Set method	Stop to set	Access	RW
--------	------	---	---------------	-------------	--------	----

		Range	0~1023	Unit	-	active	Immediately	default	85
						moment			
,	This para	ameter is pass	sword protect	ted and c	an be o	btained by se	elf-learning.		

P00.75	Name	When the H is 3, the co		ding	Set method	Stop to set	Access	RW		
	Range	0~1023	Unit	-	active	Immediately	default	255		
					moment					
This parameter is password protected and can be obtained by self-learning.										

P00.76	Name	When the H is 4, the c electri		nding	Set method	Stop to set	Access	RW	
	Range	0~1023	Unit	-	active moment	Immediately	default	765	
This parameter is password protected and can be obtained by self-learning.									

P00.77	Name	When the H is 5, the c electri		nding	Set method	Stop to set	Access	RW		
	Range	0~1023	Unit	-	active	Immediately	default	595		
					moment					
This parameter is password protected and can be obtained by self-learning.										

P00.78	Name	When the H is 6, the c electri		nding	Set method	Stop to set	Access	RW	
	Range	0~1023	Unit	-	active	Immediately	default	935	
					moment				
This para	This parameter is password protected and can be obtained by self-learning.								

P00.79	Name	Z point wi	indow er	nable	Set method	Stop to set	Access	RW
P00.79	Range	0~255	Unit	-	active moment	Immediately	default	22
This para	This parameter is password protected.							

10.2 P01 group parameters - driver hardware parameters

P01 01	Name	ARM soft	ware v	version	1	1	Set method	-	Access	RO
P01.01	Range	0~65.535	Unit	t -		r	active noment	-	default	-
DO1 02	Name	FPGA soft	ware	versio	1	1	Set method	-	Access	RO
P01.02	Range	0~65535	Unit	t -		r	active noment	-	default	-
DO1 02	Name	Driver rated current			1	Set method	Stop to set	Access	RW	
P01.03	Range	0~3276.7 Unit A		r	active noment	Immediately	default	6.0		
This para	meter is pass	sword protected.								
D01.04	Name	Driver rated current				1	Set method	-	Access	RO
P01.04	Range	0~3276.7	0~3276.7 Unit A		L	r	active noment	-	default	-
P01.05	Name	U ph	ase cu		;		Set method	-	Access	RO
P01.05	Range	-3276.7~32	76.7	Unit	1	A	active momen	t -	default	-
P01.06	Name	V ph	ase cu		;		Set method	-	Access	RO
P01.00	Range	-3276.7~32	76.7	Unit	1	A	active momen	t -	default	-
		·								
DO1 07	Name	Rated voltage of the drive			ve	1	Set method	anytime	Access	RW
P01.07	Range	100~32767 Unit V		r	active noment	Immediately	default	220		
					_					
P01.08	Name	Bus voltag	e mor	nitoring	g	1	Set method	-	Access	RO
	Range	0~32767	Unit	t V	7		active	_	default	-
										L

					moment			
	Name	Bus voltaș	ge calib	ration	Set		Access	RW
P01.09	Name	coe	fficient		method	anytime	Access	KW
P01.09	D	0.22767	TT	0/	active	T 1' 4 1	1 C 1	100.0
	Range	0~3276.7 Unit %		%	moment	Immediately	default	100.0
	N	Duizza 4			Set		A	D.O.
P01.10	Name	Drive to	Drive temperature			-	Access	RO
P01.10	Dance	0~3000 Unit 0.1℃			active		default	
	Range	0~3000 Unit 0.1℃			moment	-	delault	-
	Name	PWM freq	uency s	setting	Set	Stanta ant	Access	RW
	Name	re	gister		method	Stop to set	Access	RW
P01.11					active	Take effect		
	Range	0~4	Unit	-		after power	default	3
					moment	on		
		Settin	v or		Frequenc	DV/		
		0	ig		1.5K	<i>y</i>		
		1			2K			
		_			4K			
			3		8K			
		4			10K			
This regis	ster is passw	ord protected	l.					

	Name	IGBT	dead tim	e	Set method	Stop to set	Access	RW
P01.12	Range	3~10	Unit	us	active moment	Take effect after power on	default	3
This regi	This register is password protected.							

P01.13	Name	Driv	er type		Set method	-	Access	RO
P01.13	Range	-	Unit	-	active moment	-	default	0

The first two digits represent the drive communication type, and the last three digits represent the drive function type.

The communication type is 5, representing general-purpose servo, RS485-Modbus communication;

The communication type is 6, which represents CANopen bus servo with CiA402 protocol;

The communication type is 7, which represents EtherCAT bus servo with CiA402 protocol;

The communication type is 9, which means PROFINET bus servo;

The function type is 1, which represents a general-purpose servo with tension control function; The function type is 2, which represents a general-purpose servo with the function of round pressing; The function type is 3, which represents a general-purpose servo with wheel cutting function; The function type is 5, which represents a general-purpose servo with flying shear function; The function type is 7, which represents a general-purpose servo with a fully closed-loop pressure function;

DO1 15	Name	Driver lev	el numb	er	Set method	-	Access	RW
P01.15	Range	0~32767	Unit	-	active moment	-	default	0

When restoring the factory defaults, the parameters related to the drive level will be restored. The numbers and corresponding levels are as follows:

E-structur	re servo driver class nun	nber
Drive class	Current (A)	Voltage (V)
1	3A	220V
2	6A	220V
3	12A	220V
4	7A	380V
5	12A	380V
6	16A	380V
7	20A	380V
8	27A	380V
10	12A	440V
16	27A	220V
40	15A	220V
41	20A	220V
42	32A	380V
142	60A	380V
143	460A	380V

P01.16	Nam	ie	The multiple loop execution and the PW	on frequ	ency	Set method	anytime	Access	RW
101.10	Rang	ge	0~3	Unit	-	active moment	Take effect after power on	default	0
					•	ed loop execution	n		

1	1 x
2	2 x
3	4 x

Only Nikon 24-bit encoders allow setting bits 4 times, and the switching frequency must be less than or equal to 8k

Na	Name	Resistanc samplin			Set method	Stop to set	Access	RW	
P01.17	Range	0~65.535	Unit	-	active moment	Take effect after power on	default	0	
This regi	This register is password protected.								

P01.18	Name	The current loop execution frequency is a multiple of the PWM frequency		Set method	anytime	Access	RW	
	Range	0~4	Unit	-	active moment	Take effect after power on	default	0

Setting	The current loop execution frequency is a
	multiple of the PWM frequency
0	2 x
1	1 x
2	2 x
3	4 x
4	8 x

	Name	Current sampling decimation rate			Set method	anytime	Access	RW
P01.19	Range	0~4	Unit	-	active moment	Take effect after power on	default	0

Setting	Current sampling decimation rate
0	Decimation rate is 32 and avoids PWM spikes
1	Decimation rate is 32 to avoid PWM spikes
2	Decimation rate is 64, do not avoid PWM spikes

3	Decimation rate is 128, do not avoid PWM spikes
4	Decimation rate is 256, do not avoid PWM spikes

	Name		Allow PWM to update immediately			Set method	anytime	Access	RW
P01.21	Range	0~1	U	Jnit	-	active moment	Take effect after power on	default	0
Setting 0				Current sampling decimation rate PWM up and down update					
		1			PWM	is updated in	mmediately		

	Name	Deadband Compensation Percentage		Set method	Allow setting	Access	RW	
P01.22	Range	0~100	Unit	%	active moment	Take effect after power on	default	0

D01 20	Name C-phase current offset va				Set method	-	Access	RO
P01.30	Range	0~32767	Unit	AD	active moment	-	default	0
This para	ameter is pass	sword-protec	ted and a	automat	ically calcula	ited when pow	er is turned o	n.

P01.31	Name	B-phase current sampling offset value			Set method	-	Access	RO
P01.31	Range	0~32767	Unit	AD	active moment	-	default	0
This para	ameter is pass	sword protect	ted.					

	Name	C-phase	current A	AD	Set	_	Access	RO	
P01.32	rvanic	sampl	ing valu	е	method	_	Hecess	RO	
P01.32	Range	0~32767	Unit	AD	active		default		
	Range	0~32707	Onit	AD	moment	-	uciauit	-	

	Nama	B-phase	current A	AD	Set		Aggagg	RO
P01.33	Name samp		sampling value			-	Access	KO
P01.55	Danas	0.22767	T India	A D	active		J. f., 14	
	Range	0~32767	Unit	AD	moment	-	default	-

	Name	Capacitor	voltage	AD	Set		Access	RO
P01.34	Name	sampli	ng value	e	method	_	Access	KO
P01.34	D	0.22767	TT *:		active		1.6.1.	
	Range	0~32767	Unit	AD	moment	-	default	-
		Motor tem	perature	e AD	Set			
20125	Name	samp	le value		method	-	Access	RO
P01.36	_				active			
	Range	0~32767	Unit	AD	moment	-	default	-
	3.7	continuous	run time	from	Set			D.O.
D01.27	Name	last restore	factory	value	method	-	Access	RO
P01.37	T.		T T •	3.4	active		1.0.1.	
	Range	-	Unit	Ms	moment	-	default	-
	Name Driver ID				Set		A	D.O.
D01.20	Name	Dri	ver ID		method	-	Access	RO
P01.39	D		TT '4		active		1.6.14	0
	Range	-	Unit	-	moment	-	default	0
	NI	Duite	ID2		Set		A	D.O.
DO1 44	Name	Driv	er ID2		method	-	Access	RO
P01.44	D		TT '4		active		1.6.14	0
	Range	-	Unit	-	moment	-	default	0
		,						
	Now	Multi-function parameter			Set		A 0	DW
DO1 46	Name		1		method	anytime	Access	RW
P01.46	Day	0 65525	TT!4		active	e In a liet 1 1 C 1	1. f1	220
	Range	0~65535	Unit	-	moment	Immediately	default	220
Multi-fu	nction setting	BIT0 enable	s AI aut	omatic	correction, B	IT1 does not er	nable DO out	put

Multi-function setting BIT0 enables AI automatic correction, BIT1 does not enable DO output protection, when BIT11=1, the voltage is low (less than 0.65*1.1414 of the rated voltage), the relay is disconnected, and when BIT11=0, the relay will not be disconnected when it is closed. When the BIT9 universal servo is set to 1, the offset will not be performed when returning to zero, and the origin will be directly set as the offset position.

P01.51	Name	e Multi-function parame		neter	Set method	anytime	Access	RW
P01.31	Range	0~65535	Unit	-	active moment	Immediately	default	2

When BIT0=0, use the torque feedforward to calculate the torque feedforward according to the position command. When BIT0=1, use the old torque feedforward to calculate the torque feedforward according to the velocity command.

When BIT1=0, enable, torque feedforward when P07.20=0/1. When BIT1=1, disabled. Torque feedforward when P07.20=0/1.

When BIT2=1, power-on triggers the phase finding of the linear motor incremental encoder

When BIT3=1, Fn004 does not learn the motor encoder parameters, only VVVF speed regulation

When BIT4=1, the resolver FREQ SEL1

When BIT5=1, resolver AMCD

When BIT6=1, the resolver automatically resets the fault

When BIT7=1, select the high-speed pulse command as the pulse position command. BIT7=0, select the low-speed pulse command as the pulse position command.

10.3 P02 group parameters - basic control parameters

P02.	0.1	Name	Drive C	ontrol M	ode	Set method	anytime	Access	RW			
P02.	01	Range	0~7	Unit	-	active moment	Immediately	default	0			
		Setting				Control mod	e					
		0				Position mod	le					
		1				Speed mode	2					
		2				Torque mod	e					
		3	Positio	n/torque	mode I	O switching,	select Torque mo	ode when				
			INFn.36 is active									
		4	Position/speed mode IO switching, select speed mode when INFn.36									
			is active									
		5	Torque/speed mode IO switching, select torque mode when INFn.36									
			is active									
		6	Position/torque/speed mode IO switching, through INFn.36, INFn.37									
			_			switching						
				INFn.3	37	INFn.36	working mo	ode				
				invali	d	invalid	Speed mod	le				
				invali	d	valid	Torque mo	de				
				valid		xx Position mode						
		7			Ded	icated control	mode					

	Name	Current Mode of operation display			Set method	-	Access	RO
P02.02	Range	0~2	Unit	-	active moment	-	default	-

Setting	control mode
0	position mode
1	speed mode
2	torque mode

D02 02	N	ame	Forward rotation	d and rev		Set method	anytime	Access	RW
P02.03		ange	0~2	Unit	-	active	Immediately	default	0
						moment			
		S	etting		Forward/reverse setting				
			0	N	lo forward	d and reverse	restrictions		
			1	l Forwar			rohibited		
			2		Re	verse prohib	ited		

P02.04	Name	Driv	e status		Set method	-	Access	RO
P02.04	Range	0~32767	Unit	-	active moment	-	default	-
		Setting			Drive stat			
					Self-check (n	ordy)		
		8			ready (rd	y)		
		16			running(ru			
		32		e	mergency sto	pp(run)		
		64		Resp	onding to fai	lures (run)		
	128			Fault (Er.x	xx)			

B00.05	Name	LED display content in running or rdy state			Set method	anytime	Access	RW
P02.05	Range	0~10	Unit	-	active moment	Immediately	default	0

Setting	Display content
0	Display state
1	Display speed
2	Display capacitor voltage
3	Display temperature
4	Display current
5	Display DI level value
6	Display DO level value
7	AI1 voltage value
8	AI2 voltage value
10	Torque percentage

P02.07	N	lame	Parameter	write pr	otection	Set method	anytime	Access	RW
F02.07	Range 0~1			Unit	-	active moment Immediately		default	1
	Setting 0			Parameter write setting write prohibited					
			1			writable			

P02.08	Name	Paramete	er save se	election	Set method	anytime	Access	RW	
P02.08	Range	0~1	Unit	-	active moment	Immediately	default	0	
	S	Setting		Paran					
		0	The j						
		1	Parame	er					
				off					
		2	The pa	arameters v	vritten by con	mmunication are	;		
			saved to RAM, and lost when power off, the						
			parameters written by the panel are saved to						
			EI	EPROM, aı					

	Name	Start	up optio	ns	Set method	anytime	Access	RW
P02.09	Range	0.00~5.00	Unit	1	active moment	Take effect after	default	0

power on

a.bb format. When a=0, it starts normally. When a=1, all parameters are read to the U disk at startup, and the name in the U disk is <PARA + 'bb'.csv>. For example, if P02.09=1.05 is set, all parameters will be saved to the U disk when the system is started next time, and the file name is 'PARA05.csv'. When a=2, all parameters with the parameter name <PARA + 'bb'.csv> in the U disk will be updated to the servo at startup. For example, when P02.09=2.99, all parameters with the parameter name 'PARA99.csv' in the U disk will be updated to the servo at the next startup. When a=3, all non-motor drive parameters with the parameter name <PARA + 'bb'.csv> in the U disk will be updated to the servo at startup. 13. All parameters except P10.01, P1003, P10.04, and P10.06; when a=4, update all control parameters with the parameter name <PARA + 'bb'.csv> in the U disk to the servo , the control parameters refer to all parameters except P00, P01 group, P05.13, P10.01, P1003, P10.04, P10.06, P07 group; when a=5, record the curve in real time to U plate.

P02.10	Name		ion of Servo	• •	Set method	anytime	Access	RW		
P02.10	Range 0~5		Unit	-	active moment	Immediately	default	0		
	Setti	ng	Selection	Selection of Servo Type II Fault Shutdown Mode						
	0									
	1		rapi							
	2		slov	slow deceleration stop and disable driver						
	3		rapid o	deceleration	stop and kee	ep enable driver				
	4		slow o							
	5		Brakin							

	N	Jame	fault ty _l	pe 3 stop	mode	Set	anytime	Access	RW
D02 11			selection			method			
P02.11			0~5	Unit -		active	Immediately	default	0
	- `	unge				moment	Immediately	aciaaii	
		S	Setting						
			0						
			1	rapi					
			2	slov	v decelerati	on stop and d	lisable driver		
			3	rapid o					
			4	slow deceleration stop and keep enable driver					
			5	Brakin	g according	to the curren	nt set by P02.18		

P02.12	Name	Over travel stop mod selection			Set method	anytime	Access	RW
	Range	0~5	Unit	-	active	Immediately	default	0

	moment	
Setting	Over travel stop mode selection	
0	free to rotate	
1	rapid deceleration stop and disable driver	
2	slow deceleration stop and disable driver	
3	rapid deceleration stop and keep enable driver	
4	slow deceleration stop and keep enable driver	
5	Braking according to the current set by P02.18	

D02 12	N	ame	Disable o	lriver sto	p mode	Set method	anytime	Access	RW
P02.13	R	ange	0~2	Unit	-	active moment	Immediately	default	0
		S	etting 0	8		er stop mode ree to rotate	eselection		
			1	rapi	rapid deceleration stop and disable driver				
			2	slov	v decelerati	on stop and d	lisable driver		

P02.14	Name Name		Emerg	ency		Set method	anytime	Access	RW
FU2.14]	Range	0~4	Unit	-	active moment	Immediately	default	0
		S	Setting E		Emergency	stop mode s	selection		
			0						
			1	rapi					
			2		slow deceleration stop and disable driver				
			3		rapid deceleration stop and keep enable driver				
			4	slow c	stop and kee	p enable driver			

P02.16	Name	rapid	rapid stop time			anytime	Access	RW
P02.10	Range	0~65535	Unit	ms	active moment	Immediately	default	500
D02.15	Name	slow	stop tim	ne	Set method	anytime	Access	RW
P02.17	Range	0~65535	Unit	ms	active moment	Immediately	default	1000
P02.18	Name	Drive dy	namic bi	raking	Set	anytime	Access	RW

	C	urrent		method			
Range	0~3276.7	Unit	%	active moment	Immediately	default	50

	Name	Enable ha	rdware d oraking	ynamic	Set method	anytime	Access	RW
P02.19	Range	0~32767	Unit	ms	active moment	Reset takes effect	default	0

P02.20	Name	Servo brakin	Servo braking option		Set method	anytime	Access	RW
F 02.20	Range	0~3	Unit	-	active moment	Immediately	default	2

Setting	Braking method
0	Never start the brake
1	Braking is possible only when decelerating
2	ready to brake at any time
3	Braking is only possible when the energy is fed back

For 220V drives, when the DC bus voltage is greater than 380VDC, the dynamic braking circuit is activated;

For 380V drives, when the DC bus voltage is greater than 680VDC, the dynamic braking circuit is activated.

P02.21	Name	Braking resistor value		Set method	anytime	Access	RW	
PU2.21	Range	0~3276.7	Unit	Ω	active moment	Immediately	default	0

D02 22	Name	Maximum _I	power of esistor	braking	Set method	anytime	Access	RW
P02.22	Range	0~3276.7	Unit	KW	active moment	Immediately	default	0

	Name	Heat dissip			Set	anytime	Access	RW	
D02.22		of braking resi		esistor method				10,11	
P02.23	Danga	0~100	Unit	t %	active	Immediately	default	50	
	Range	0~100	Ollit	/0	moment	miniediately	delault	30	
If it is se	If it is set to 100%, it means that it takes 10s to drop from the maximum heat to 0.								

P02.30	Name	After the brake release	Set	anytime	Access	RW]
--------	------	-------------------------	-----	---------	--------	----	---

			1	1	.1 1					
		command	-		method					
		command	input is	delayed						
	Danas	0 22767	T India		active	Turne adiatales	Jafay 14	250		
	Range	0~32767	Unit	ms	moment	Immediately	default	230		
	N	D 1	1.1		Set			DIII		
D02.21	Name	Brake zero	speed th	nreshold	method	anytime	Access	RW		
P02.31		0.22565	** *:		active	- 1	1.0.1.	20		
	Range	0~32767	Unit	rpm	moment	Immediately	default	30		
		_			Set					
	Name	Power	up hold	tıme	method	anytime	Access	RW		
P02.32	_	0.22767			active					
	Range	0~32767	Unit	ms	moment	Immediately	default	150		
		Max brake	hold tir	ne after	Set			DIII		
	Name	disa	ble drive	er	method	anytime	Access	RW		
P02.33	_				active					
	Range	0~32767	Unit	ms	moment	Immediately	default	500		
After the enable is turned off, when the motor is rotating, the maximum waiting time for the brake										
to be effective.										
	NI	Duissa			Set			DW		

D02.25	Name	Drive	er passwo	ord	Set method	anytime	Access	RW
P02.35	Range	0~32767 Unit -		active moment	Immediately	default	0	
	Nama	Self-lear	Self-learning maximum			onttimo	Aggagg	RW
D02.26	Name	cur	rent limi	t	method	anytime	Access	KW
P02.36						T 11 . 1		

active

moment

Immediately

default

30

Setting 30 is 30% of the rated current of the motor

Range

0~100

Unit

	Name	Internal so	oftware o	counter	Set		Access	RO				
P02.37	Name	cou	unt value		method	-	Access	KO				
	Range	0~214748 3647	Unit	-	active moment	-	default	-				
This para	This parameter is a double-byte parameter; the value is retained after power failure.											

P02.39	Name	Internal so	oftware o		Set method	anytime	Access	RW
102.37	Range	0~214748	Unit	-	active	Immediately	default	0

		3647		moment		
This para	meter is a do	ouble-byte pa	rameter.			

D02 41	Name	VVVF ma	aximum output	voltage	Set method	anytime	Access	RW
P02.41	Range	0~1000	Unit	V	active moment	Immediately	default	30

	Name	Linear m	otor para	ameter	Set method	anytime	Access	RW
P02.42	Range	0~32767	Unit	-	active moment	Reset takes effect	default	0

The linear motor parameter defaults to 0, a total of 5 digits, the lower two digits set the linear motor phase self-learning gain, generally set to 5-30, when it is set to 0, the gain is automatically set, and the second digit encoder self-learns the most laps. Number, that is to say, the number of encoder pulses that the self-learning takes the most = the second bit * resolution, the third bit is the speed level of the encoder self-learning encoder, the high bit is set to 1, the encoder does not have a hall, set to 0, the encoder has hall.

P02.50	Name	Instruc	tion reve	ersal	Set method	anytime	Access	RW
P02.30	Range	0-7	Unit	-	active moment	Immediately	default	0

When the 0th bit is valid, the position command is reversed;

When the first bit is valid, the speed command is reversed;

When the second bit is valid, reverse the torque command

10.4 P03 Group parameter - position mode parameter

P03.01	Name	So	ource o	f positio	n cmd	Set method	anytime	Access	RW
105.01	Range	0	~6	Unit	-	active moment	Immediately	default	0
	Setting			position command source					
	0			Sourced from external XY pulse commands					
	1			From internal multi-segment location planning					
	2		S	witch be	tween exte	ernal pulse co	ommand and into	ernal	
				positio	on plannin	g command	through INFn.35	5	
	3		The o	comman	d pulse su	perimposes t	he second encod	er pulse	
					as the	position con	nmand		

4	Command pulse superimposed internal position planning as
	position command
5	Round pressure round sleeve label
6	sine wave

D02 02	1	Name	puls	e pattern	1	Set method	Stop to set	A	ccess	RW
P03.02	Range 0~4		Unit	t - active Immediately moment		de	efault	2		
'		Setting								
			0		Pulse plus direction &positive logic					
			1	Pulse plus direction &negative logic						
			2			AB pulse				
			3		CW+	-CCW positiv	e logic			
			4		CW+	CCW negativ	ve logic			

	Name	Command pu		dwa	ire	Set method	Stop to set	Access	RW
P03.03	Range	0~32767	Unit	20	ns	active moment	Immediately	default	50
	Name	Command j		oun	t	Set method	-	Access	RO
P03.04	Range	-2147483647 2147483647	~ Un	i	-	active	-	default	-
		214/46304/ t				moment			
	Name	Position con		_		Set	set when	Access	RW
P03.06	Range	0~128	median filter time consta 0~128 Unit			method active	stop Immediatel	y default	0
						moment			
	Name	Position command given low-pass filter time constant				Set method	set when	Access	RW
P03.07	Range	0~32767	Uni		ms	active moment	Immediatel	y default	20
							1		
D02.00	Name	Electronic nume	gear ra	itio 1	1	Set method	anytime	Access	RW
P03.08	Range	1~214748364	7 U	nit	-	active moment	Immediatel	y default	0
			·					•	
D02 10	Name	Electronic denon	gear ra ninator		1	Set method	anytime	Access	RW
P03.10	Range	1~214748364	7 U	nit	-	active moment	Immediatel	y default	1000
D02 12	Name	Electronic nume	gear ra	itio 2	2	Set method	anytime	Access	RW
P03.12	Range	1~2147483647 Unit -				active moment	Immediatel	y default	0
			•		_				_
D02 14	Name	Electronic denon	gear ra		2	Set method	anytime	Access	RW
P03.14	Range	1~214748364	7 U	nit	-	active moment	Immediat ely	default	1000

Name		Electronic	gear rati	.0	Set	anytima	Agggg	RW
D02 16	Name	switching tir	ne const	ant	method	anytime	Access	KW
P03.16	Range	0~32767	Unit	ms	active	Immediately	default	0
	Range	0'-32101	Omi	1113	moment	mimediatery	delauit	

D02 17	Name	Position error (0.0001round)			Set method	-	Access	RO
P03.17	Range	-	Unit	0.0001 round	active moment	-	default	-

Name P03.19	Name	Maximum posi threshold (0.00			Set method	anytime	Access	RW
P03.19	Range	0~2147483647	Unit	-	active moment	Immediately	default	30000

Excessive position error threshold, when it is set to 0, no excessive position error protection will be performed.

P03.21	Name	deviation	Form setting of position deviation clear signal INFn.25		Set method	anytime	Access	RW
	Range	0~3	Unit	-	active moment	Immediately	default	0

Setting	Position deviation clear signal form setting
0	Clear deviation when INFn.25 is valid
1	Clear the deviation when INFn.25 changes from invalid to valid
2	INFn.25 Invalid clear deviation
3	Clear the deviation when INFn.25 is changed from valid to invalid

	Name			n deviati		Set	anytime	Access	RW
P03.22			clearin	ng option	ıs	method			
P03.22	Raı	nge	0~6	Unit	-	active moment	Immediately	default	0
		S	etting	I	Position	deviation clea	aring options		

Setting	Position deviation clearing options					
0	Clear position error and clear velocity					
1	reserve					
2	reserve					
3	reserve					
4	Clear the position error, and at the same time,					
	the speed drops to zero in a straight line, and					
	the falling time is set by P02.16					

5	reserve
6	Clear the position error, at the same time the
	speed drops to zero with a quadratic curve, the
	drop time is set by P02.16

P03.23	Name	Position co		•	Set method	anytime	Access	RW		
	Range	0~32767	Unit	ms	active moment	Immediately	default	0		
This para	This parameter is used in conjunction with OUTFn.33.									

D02 25	Name P03.25 Range		Types of high-speed pulse commands			Set method	Stop to set	A	ccess	RW
P03.23			0~4	Unit	-	active moment	Immediately de		efault	0
		Setting		Command pulse count mode						
			0	Positive logic of pulse plus direction						
			1	Negative logic of pulse plus direction						
			2		AB pulse					
		3		CW+CCW positive logic						
			4							

	Name	Count value of high-speed			Set		Access	RO
P03.26	Ivallic	pulse com	mand		method	-	Access	KO
P05.20	D	-2147483647~	Uni		active		1 - 6 14	
	Range	2147483647	t	-	moment	-	default	-

P03.31	N	ame	Enable fu	ll closed	loop	Set method	Stop to set	A	ccess	RW
P03.51	R	ange	0~1	Unit	-	active moment	Immediately	de	efault	0
		S	etting			ll closed loop	•			
			0		Disable fully closed loop					
		1			En	able full close	ed loop			

	Name	Fully close	ed loop o		Set method	anytime	Access	RW
P03.32	Range	0~2	Unit	-	active moment	Immediately	default	0

Setting	Full closed loop mode
0	half closed loop
1	fully closed loop
2	Switch between full closed loop and semi
2	closed loop according to IO

When P03.32 = 2, electronic gear ratio 1 is used for semi-closed loop, and electronic gear ratio 2 is used for full-closed loop.

DO2 22		N	ame	Fully close	ed loop foolarity	eedback	Set method	anytime	Acces	s RW	
P03.33		Range 0~1		Unit	-	active moment	Immediately	defau	lt 0		
			S	etting	F	ully close	d loop feedb	ack polarity			
				0	The v	i					
					the sec	or					
						decrem	ented simulta	aneously			
				1	The v	alues of th	ne motor enc	oder counter and	1		
			the seco	ond encod	er counter ar	e incremented a	nd				
							decremented	1			

P03.34	Name	The number of pu second encoder corr one revolution of	espondin	g to	Set method	anytime	Access	RW
	Range	1~2147483647	Unit	-	active moment	Immediat ely	default	10000

P03.36	Name	Full closed loo error is too larg (unit is 0.000	e thresh	old	Set method	anytime	Access	RW
	Range	0~2147483647	Unit	-	active moment	Immediately	default	10000

The fully closed loop position error refers to (the count value of the motor encoder - the count value of the second encoder reduced to the motor encoder), and the position error represents how much the relative sliding between the material and the motor is.

When this parameter is set to 0, the full-closed loop position error excessive protection will not be performed.

	Name	Fu	ll closed le	oop position	Set	_	Access	RO
D02.29	rvanic		err	or	method	_	Hecess	RO
P03.38	Dongo		Unit	0.0001	active		default	
	Range	-	Oiiit	round	moment	-	uciauii	-

	Name	Full closed loo	p position	on	Set	anytime	Access	RW
D02 40	Name	error clearing	g cycles		method	anytime	Access	IXVV
P03.40	Range	0~32767	Unit	-	active moment	Immediately	default	20

This value is valid when in full closed loop state. When set to 0, the full-closed loop position error will not be cleared; when set to n, when the motor rotates every n cycles, if the absolute value of the full-closed loop position error is less than P03.36, the full-closed loop position error will be cleared.

	Name	Fully clo	osed loop		Set method	-	Access	RO
DO2 41		en	coder rai	.6	memod			
P03.41	Range	-	Unit	clk/5ms	active moment	-	default	-

D02 42	Name	Fully clo	sed loop coder rat		Set method	-	Access	RO
P03.42	Range	-	Unit	clk/5ms	active moment	-	default	-

	Name	1 obitioning	complet	te output	Set	anytime	Access	RW
15	rvanic	co	ndition		method	anythic	7100033	1000
.43	Range	0~4	Unit	-	active moment	Immediately	default	0
.45	Range			-	active	Immediately	defaul	t

Setting	Positioning complete output condition
	When the position error is less than the positioning completion
0	threshold, it will be output directly, otherwise, the output will be
	cleared.
	When the position error is less than the positioning completion
1	threshold, and the speed command P03.95 in the position mode is zero,
	the output is output, otherwise the output is cleared.
	When the position error is less than the positioning completion
2	threshold, and the filtered speed command P03.96 in the position mode
	is zero, the output is output, otherwise the output is cleared.
	When the position error is less than the positioning completion
2	threshold, and the speed command P03.95 in the position mode is zero,
3	the output is output. When the speed command P03.95 in the position
	mode is not zero, the output is cleared.
4	The multi-segment position command is sent and the position error is
4	less than the positioning completion threshold

P03.46	Name	positioning completion threshold (unit is 0.0001 round)		Set method	anytime	Access	RW
	Range	0~32767 Unit -		active moment	Immediately	default	10

D02.45	Name	Positioning close to output conditions			Set method	anytime	Access	RW
P03.47	Range	0~3	Unit	-	active moment	Immediately	default	0

Setting	Positioning close to output conditions
0	Output when the position error is less than the positioning proximity
0	threshold, otherwise clear the output;
	The output is when the position error is less than the positioning
1	approach threshold and the speed command P03.95 in the position mode
	is zero, otherwise the output is cleared;
	Output when the position error is less than the positioning approach
2	threshold and the filtered speed command P03.96 in position mode is
	zero, otherwise clear the output
	The output is when the position error is less than the positioning
3	approach threshold and the speed command P03.95 in the position mode
3	is zero, and the output is cleared when the speed command P03.95 in
	the position mode is not zero

D02 40	Name	positioning close threshold (unit is 0.0001round)			Set method	anytime	Access	RW
P03.48	Range	0~32767	Unit	-	active moment	Immediately	default	100

P03.49	Name	positioning completion/close time threshold			Set method	anytime	Access	RW
	Range	0~32767	0~32767 Unit ms		active moment	Immediately	default	10

When the position error is less than the positioning completion/proximity threshold, and the time threshold is maintained, the positioning completion/proximity signal is output.

P03.51	Name	Homing method		Set method	Stop to set	Access	RW	
103.31	Range	0~99	Unit	-	active moment	Immediately	default	1

Homing acceleration and Set											
	Name	Homing	acce	eleration	and	Set	anytime	Access	RW		
P03.52	runic	dece	elerat	ion time	:	method	difytime	7100033	1011		
103.32	Range	0~6553	5	Unit	ms	active	Immediately	default	500		
						moment					
	N	T: .	1		1	Set			DIII		
D02.52	Name	First	hom	ing spee	d	method	anytime	Access	RW		
P03.53		0.2276	0 22767 Unit ram					1.0.1	7 00		
	Range	0~3276	0~32767 Unit rpm				Immediately	default	500		
							1				
						Set			DIV		
D02.54	Name	Second	d hor	ning spe	ed	method	anytime	Access	RW		
P03.54		0.2276	0 22767 Huit man					1 0 1	100		
	Range	0~3276	0~32767 Unit rpm				Immediately	default	100		
		'					•				
	3. T	7.7	Homing offset						DIV		
D02.55	Name	Hoi	nıng	offset		method	anytime	Access	RW		
P03.55		-214748364	47~	** .	User	active		default			
	Range	21474836	47	Unit	units	moment	Immediately		0		
						Set					
	Name	Zero	o poi	nt range		method	anytime	Access	RW		
P03.57			U	ni 0.0	0001	active			_		
	Range	0~32767	1	t ro	ound	moment	Immediately	default	5		
	27	Interru	pt fix	xed-leng	th	Set					
Dog 50	Name	fund	ction	enable		method	Stop to set	Access	RW		
P03.60											
	Range	0~2	0~2 Unit -				Immediately	default	0		
	~	· ·		Т.,	. ~	11 (1.0	ı· ,,•				
	Se	etting			-		nction settings				
						ger interrupt fixed-length function					
		1									
	2 Enable Z point trigger interrupt fixed length										

P03.61	Name	Interrupt fixed length speed	Set method	anytime	Access	RW		
103.01	Range	0~32767	Unit	rpm	active moment	Immediately	default	3000

P03.62	Name	Interrupt f acceleration/o	decelera	_	Set method	anytime	Access	RW		
	Range	0~32767	Unit	ms	active	Immediately	default	500		
					moment					
D02 62	Name	Interrupt fix	_	th	Set method	anytime	Access	RW		
P03.63	Range	0~2147483647	Unit	-	active moment	Immediately	default	10000		
P03.65	Name	Interrupt fixed-length window position (User units)			Set method	anytime	Access	RW		
	Range	0~2147483647	Un	it -	active moment	Immediately	default	0		
P03.67	Name	Interrupt fix window (User t	range	th	Set method	anytime	Access	RW		
	Range	0~65535	Unit	-	active moment	Immediately	default	0		
Interrupt fixed-length window range (user unit), when it is 0, no window will be added, and the interrupt fixed-length trigger enable signal is derived from INFn.38.										

D02 (0	N	lame	Cancel tl	ne fixed i	length	Set method	anytime	Access	RW
P03.68	R	ange	0~1	Unit	-	active moment	Immediately	default	0
		S	etting	etting Cancel			h mode		
			0	After	the interru	ıpt fixed leng	gth is completed	,	
				directly cance			pt fixed length		
			1	Rele	ease interr	upt fixed len	gth through IO		

Name		Interrupt the long latched			Set	_	Access	RO
	Name motor po		osition		method	_	Access	KO
P03.69		-2147483647			٠٠.			
	Range	~	Unit	-	active	-	default	-
		2147483647			moment			

DO2 72	Name		ble hardwar oftware lim		Set method	anytime	Access	RW		
P03.73	Range	0~2	Unit	-	active moment	Immediately	default	0		
	Setti	ng	g Software and har			rdware limit function selection				
	0		Γ	isable sof	tware and ha					
	1		Е	nable hard	lware and so	ftware limits				
	2		Enable so	ftware and	hardware lin	nit after origin r	return			

	Name	Software limi		limit	Set method	anytime	Access	RW
P03.74	Range	-2147483647 ~ 2147483647	Unit	-	active moment	Immediately	default	-10000000

	Name	Software limi val		imit	Set method	anytime	Access	RW
P03.76	Range	-2147483647 ~ 2147483647	Unit	-	active moment	Immediately	default	10000000

	N	lame	Selection outp	of servo	•	Set method	anytime	Acc	ess	RW
P03.78	R	ange	0~2	Unit	-	active moment	Immediately	defa	ult	0
		S	etting Ty _l			pe of output	pulse			
			0		ol	itput motor p				
			1		Out	tput command pulse				
			2	2 N			nput			

D02 70			se freque on factor	•	Set method	anytime	Access	RW
P03.79	Range	1~65535	Unit	-	active moment	Reset takes effect	default	-

If the motor type is an incremental encoder, the default is 1,

The number of pulses output by the pulse output port = the number of motor pulses/P03.79; If the motor type is an absolute encoder, the default value is 10000,

Indicates that the motor rotates once, and the number of pulses output by the pulse output port is P03.79.

P03.80	N	Name	Frequency output	divisior directio	•	Set method	anytime	Access	RW
103.60	R	lange	0~1	Unit	-	active moment	Reset takes effect	default	0
		S	etting 0	Frequ		vision pulse positive outp			

P03.81	N	lame	Z pulse pola	arity sele	ection	Set method	anytime	Ac	cess	RW
P05.61	R	ange	0~1	Unit	-	active moment	Immediately	det	fault	0
		S	etting	etting Z pul			election			
			0			positive output				
			1			reverse outp	ut			

P03.82	N	lame	Enable 4t	h power	curve	Set method	Stop to set	A	ccess	RW
P03.82	R	ange	0~1	Unit	ı	active moment	Immediately	de	efault	1
		S	etting	etting Cur			ettings			
			0 Use a tra			Use a trapezoidal velocity profile				
			1 Usi			g a 4th powe	er curve			

	Name	Position curve	plannir	ng	Set	_	Access	RO
D02.92	Tvairie	erroi	r		method		7100035	l Ro
P03.83	Range	-32767~32767	Unit	-	active moment	-	default	-

D02 94	Name		ition command		Set method	anytime	Access	RW
P03.84	Range	0~32768	Unit	1	active moment	Re-enable to take effect	default	1

	Name	Mechanical position (user position unit)			Set method	-	Access	RO
P03.90	Range	-2147483647 ~	Unit	-	active moment	-	default	-
		2147483647			moment			

Name		Mechanica	ıl positi	on	Set	_	Access	RO
	Name	(encode	er unit)		method	-	Access	KO
P03.92	Range	-2147483647 ~	Unit	_	active	_	default	-
	Ü	2147483647			moment			

P03.94	Name Filtered position error	Set method	-	Access	RO			
P03.94	Range	-32767~32767	Unit	clk	active moment	-	default	-

P03.95	Name	Speed comman in positio		_	Set method	-	Access	RO		
	Range	-	Unit	rpm	active moment	-	default	-		
Speed command monitoring in position mode.										

P03.96	Name	Velocity commonitoring after position	er filteri		Set method	-	Access	RO			
	Range	-	Unit	rpm	active moment	-	default	-			
The filter	The filtered velocity command monitoring in position mode.										

10.5 P04 group parameter - speed mode related parameters

D04.01	N	lame	Speed source			Set method	anytime	A	ccess	RW	
P04.01	R	ange	0~7	Unit	-	active moment	Immediately	de	efault	0	
		S	etting		Speed source						
		0									
			1	Auxiliary speed B							
			2	A/B switching through IO-INFn.12							
			3	A+B							
			4	Communication (P08.17)							
			5	Multi-speed							
			6	UP/DOWN pattern							
			7								

P04.02		Name	Source of	main sp	eed A	Set method	anytime	A	ccess	RW
		Range	0~4	Unit	-	active	Immediately	de	efault	0
						moment				
		S	Setting							
			0							
			1	from AI1						
			2	from AI2						
			3	Sourced from AI3 (not supported on hardware)						
			4							

D04.02	Name	Value of ma	in speed	lΑ	Set method	anytime	Access	RW
P04.03	Range	-32767~327 67	Unit	rpm	active moment	Immediately	default	500

D04.04	Name	Auxiliary S	Speed B	Source	Set method	anytime	Access	RW
P04.04	Range	0~4	Unit	-	active moment	Immediately	default	0

Setting	Auxiliary Speed B Source
0	From P04.05
1	from AI1
2	from AI2
3	Sourced from AI3 (not supported on hardware)
4	from pulse rate

	Name	The value of the auxiliary speed B			Set method	anytime	Access	RW
P04.05	Range	-32767~327	Unit	rpm	active	Immediately	default	500

P04.06	Nama	Source of	speed po	ositive	Set		A	RW	
	Name	clipping			method	anytime	Access	KW	
	Range	0~3	Unit	_	active	Immediately	default	0	
					moment				

Setting	Source of positive speed limit
0	Forward Limit A
1	Positive Limit B

2	A/B switching
3	A and B are restricted at the same time

Name	Nama	Source of	speed po	ositive	Set	omytima o	A 00000	RW
	Name	li	mit A		method	anytime	Access	IV.W
P04.07	Range	0~3	Unit	-	active	Immediately	default	0
					moment	-		

Setting	Source of positive speed limit A
0	from P04.08
1	from AI1
2	from AI2
3	from AI3 (hardware not supported)

DO4 00	Name		The value of speed positive limit A			anytime	Access	RW
P04.08	Range	0~32767	Unit	rpm	active	Immediately	default	3000
					moment			

	Name	Source of velocity positive			Set	anytime	Access	RW
P04.09		li	mit B		method	,		
P04.09	Range	0~3	Unit	_	active	Immediately	default	0
	Runge		Onit		moment	immediately	deraurt	

Setting	Source of positive speed limit B
0	from P04.10
1	from AI1
2	from AI2
3	from AI3 (hardware not supported)

D04.10	Name	Value of speed positive limit B			Set method	anytime	Access	RW
P04.10	Range	0~32767	Unit	rpm	active moment	Immediately	default	3000

	Name		Source of velocity reverse		Set	anytime	Access	RW
DO4 11		l1	imiter		method			
P04.11	Range	0~3	Unit	1	active moment	Immediately	default	0

Setting	Source of reverse velocity limiter
0	Reverse limiter A
1	Reverse limiter B

2	A/B switch
3	Both A and B are restricted

	Name		Source of velocity reverse		Set	anytime	Access	RW	
P04.12			limiter A		method	anytime	7100033	ICVV	
PU4.12	R	ange	0~3	Unit	_	active	Immediately	default	0
	IX	ange	0/3/	Omi	_	moment	miniculatory	delauit	
		S	etting	S	ource of	reverse veloc	city limiter A		
			0			from P04.1	3		
		1			from AI1				
			2	from AI2					

P04.13	Name	Velocity reverse limiter A			Set method	anytime	Access	RW
P04.13	Range	0~32767	Unit	rpm	active moment	Immediately	default	3000

from AI3(hardware not supported)

3

P04.14	Name	Source of velocity reverse limiter B			Set method	anytime	Access	RW
F04.14	Range	0~3	Unit	-	active moment	Immediately	default	0

Setting	Source of reverse velocity limiter B
0	from P04.15
1	from AI1
2	from AI2
3	from AI3(hardware not supported)

DO4 15	Name Velocity reverse limite	niter B	Set method	anytime	Access	RW		
P04.15	Range	0~32767	Unit	rpm	active moment	Immediately	default	3000

D04.16	Name	Jog s	speed		Set method	anytime	Access	RW				
P04.16	Range	0~32767	Unit	rpm	active moment	Reset takes effect	default	20				
Note that	Note that this value is modified but not saved during keyboard tap trials.											

DO4 17	Name	Acceler	ate time	;	Set method	anytime	Access	RW
P04.17	Range	0~32767	Unit	ms	active moment	Immediately	default	500
P04.18	Name	Decelera	tion tim	e	Set method	anytime	Access	RW
104.10	Range	0~32767	Unit	ms	active moment	Immediately	default	500
P04.20	Name	Speed instr order filte cons			Set method	anytime	Access	RW
	Range	0~32767	Unit	ms	active moment	Immediately	default	20
D04.21	Name	Display speed filtered values		Set method	-	Access	RO	
P04.21	Range	0~32767	Unit	rpm	active moment	-	default	-
D04 22	Name	Speed display	filterin	g time	Set method	anytime	Access	RW
P04.22	Range	0~32767	Unit	ms	active moment	Immediately	default	300
DO4 22	Name	Speed re thres	aches th shold	e	Set method	anytime	Access	RW
P04.23	Range	0~32767	Unit	rpm	active moment	Immediately	default	1000
D04.24	Name	Speed co	nsistenc shold	cy	Set method	anytime	Access	RW
P04.24	Range	0~32767 Unit rpm		active moment	Immediately	default	10	
DO4 25	Name	Zero speed	d thresho	old	Set method	anytime	Access	RW
P04.25	Range	0~32767	Unit	rpm	active moment	Immediately	default	5

D04.26	Name Zero speed position		hresholon lock	d for	Set method	anytime	Access	RW
P04.26	Range	0~32767	Unit	rpm	active moment	Immediately	default	5

D04.27	Name Lifting speed threshold	shold	Set method	anytime	Access	RW		
P04.27	Range	0~32767	Unit	rpm/s	active moment	Immediately	default	375

When the acceleration/deceleration is greater than the threshold, the acceleration/deceleration signal will be output, and the unit is rpm per second.

10.6 P05 group parameter - torque mode related parameters

D05 01	Name	sourc	e of torq	ue	Set method	anytime	A	ccess	RW	
P05.01	Range	0~5	Unit	-	active moment	Immediately	d	efault	0	
	S	Setting		source of torque						
		0		main torque A						
		1								
		2	P	erform A	B switchove	r through I/O				
		3		A+B						
	4									
		5	Internal sine wave							

	N	Name The source to		ce of the	main	Set method	anytime	A	ccess	RW
P05.02	R	ange	ange 0~3		-	active moment	Immediately	de	fault	0
		S	etting	,	Sour	ce of main to				
			0		From P05.03					
			1		From AI1					
			2		From AI2					
			3	From AI			ot supported)			

	Name	The value of	the mai	n	Set	anytime	Access	RW	
P05.03		torque	A		method	anytime	7100033	IXW	
P03.03	Range	-300.0~300.0	Unit	%	active moment	Immediately	default	0.0	

DO5 04	Name The source Range 0~3		of assis	t torque	Set method	anytime	A	ccess	RW	
P05.04			Unit	-	active moment	Immediately de		efault	0	
		S	etting		Source of assist torque B					
			0							
			1		From AI1					
			2							
			3	From AI3(hardware not supported)						

P05.05	N	ame	The valu	e of th		st	Set method	anytime	Access	RW
F03.03	Ra	ange	-300.0~300.0		Unit	%	active moment	Immediately	default	0.0
DOS 10	N	ame	Torque	limit n	nethod	l	Set method	anytime	Access	RW
P05.10	Ra	ange	0~1	0~1 Unit -			active moment	Immediately	default	0
		S	etting To				rque limit me	ethod		
							and negative	limits come from	n	

positive limiting

Positive and negative restrictions are restricted

separately

									_
	N	lame	Source of	torque p miting	ositive	Set method	anytime	Access	RW
P05.11	R	ange	0~3	Unit	-	active moment	Immediately	default	0
									•
		S	etting Source o		f forward toro				
			0		F	orward limite			
			1	•			Forward limiter B		
			2			A/B switch	1		
			3 Both			A and B are r	estricted		

1

	Name	Source of lim	torque fo	orward	Set method	anytime	Access	RW
P05.12	Range	0~3	Unit	-	active moment	Immediately	default	0

Setting	The source of the positive torque limit A
0	From P05.13
1	From AI1
2	From AI2
3	From AI3(hardware not supported)

DOS 12	Name	The value o positive li	•	;	Set method	anytime	Access	RW
P05.13	Range	0~300.0	Unit	%	active moment	Immediately	default	150.0

	Name	Source of torque forward limiting B			Set method	anytime	Access	RW
P05.14	Range	0~3	Unit	-	active moment	Immediately	default	0

Setting	Source of forward torque limiting B
0	From P05.15
1	From AI1
2	From AI2
3	From AI3(hardware not supported)

DOS 15	Name	Torque positive limiting B value			Set method	anytime	Access	RW
P05.15	Range	0~300.0	Unit	%	active moment	Immediately	default	150.0

D07.46	Name	Source of torque reverse limiting			Set method	anytime	Access	RW
P05.16	Range	0~3	Unit	-	active moment	Immediately	default	0

Setting	Source of reverse torque limiting
0	Reverse limiter A
1	Reverse limiter B
2	A/B switch
3	Both A and B are restricted

	Name	Source of torque reverse limiter A			Set method	anytime	Access	RW
P05.17	Range	0~3	Unit	-	active moment	Immediately	default	0

Setting	Source of reverse torque limiting A
0	From P05.18
1	From AI1
2	From AI2
3	From AI3(hardware not supported)

	Name	Source of	torque r	everse	Set	anytima	Aggagg	RW
DO5 10	Name	limiter A			method	anytıme	Access	IVW
P05.18	Range	0~300.0	Unit	%	active	Immediately	default	150.0
	Kange	0~300.0	Oiiit	70	moment	Illilliculately	uciauii	130.0

DOS 10	Name	Source of torque reverse limiter B			Set method	anytime	Access	RW
P05.19	Range	0~3	Unit	-	active moment	Immediately	default	0

Setting	Source of reverse torque limiting B
0	From P05.20
1	From AI1
2	From AI2
3	From AI3(hardware not supported)

	Name	The value of tor	The value of torque reverse			anytime	Access	RW
P05.20	Tvallie	limiting	limiting B		method	any time	7100055	1011
P03.20	Range	0~300.0	Unit	%	active moment	Immediately	default	150.0

P05.25	Name	switchir	threshol ng from o speed	torque	Set method	anytime	Access	RW
	Range	0~32767	Unit	0.25ms	active moment	Immediately	default	10

When the amplitude of the speed exceeds the speed limit plus the speed limit speed threshold (P05.26), and the time threshold of continuous torque mode switching to speed mode (P05.25), a speed ring is constructed to make the speed convergence within the limit.

	Nome	Speed thre	eshold f	or speed	Set		A	RW
DO5 26	Name	torque m	torque mode switchover		method	anytime	Access	KW
P05.26	Range	0~32767	Unit	rpm	active moment	Immediately	default	30
								-

When the amplitude of the speed exceeds the speed limit plus the speed limit speed threshold

(P05.26), and the time threshold of continuous torque mode switching to speed mode (P05.25), a speed ring is constructed to make the speed convergence within the limit.

P05.27	Name		rime threshold for speed node to switch to torque mode			anytime	Access	RW
	Range	0~32767	Unit	0.25ms	active moment	Immediately	default	200

When the servo is running in torque mode but the speed loop is constructed due to speed limitation, the time threshold for switching from speed mode to torque mode is determined by P05.27

P0.5.00	Name	l • .	Speed limit low pass filter time parameter			anytime	Access	RW
P05.28	Range	0~32767	Unit	ms	active moment	Reset takes effect	default	500

When the speed limit changes, low-pass filtering is performed on the speed limit value, and the filtering time is determined by P05.28. The longer the filtering time is, the slower the speed limit value changes

	Name	Torque reac	Torque reached the			anytime	Access	RW
P05.31	Name	reference	value		method	anytime	Access	IXVV
103.31	Dongo	0~300.0	Unit	%	active	Immediately	default	50.0
	Range	0~300.0	Unit	70	moment	Immediately	delault	30.0
	Name	The torque re	aches a	n	Set	onvitimo	Access	RW
P05.32	Name	effective	value		method	anytime	Access	ΚW
103.32	Dongo	0. 200.0	Ilmit	0/	active	Immadiataly	dofault	10.0
	Kange	0~300.0 Unit %		moment	Illimediately	deraun	10.0	
	Nome	Torque reache	ed inval	id	Set	onvitime	Access	DW/
103.32	Range	0~300.0 Unit % Torque reached invalid		moment	Immediately	default	10.0	

	Name	Torque reache	ed inval	id	Set	anytime	Access	RW
P05.33	Tvallie	value	9		method	any time	1100055	10,1
P03.33	Range	0~300.0	Unit	%	active moment	Immediately	default	0.0

P05.34	Name	Torque sampli	Torque sampling interval			anytime	Access	RW
103.34	Range	0~300	Unit	1	active moment	Reset takes effect	default	0

P05.35	Name	Maximum output limit of	Set	anvtime	Access	RW
103.33	Tvaine	shaking suppression torque	method	anytime	710003	1000

	Range	0~10.0	Uı	nit	%	active moment	Immediately	default	0.0
DO5 26	Name		Percentage of flutter suppression gain			Set method	anytime	Access	RW
P05.36	Range	0~10.0	Uı	nit	%	active moment	Immediately	default	0.0
	Name	Jitter speed	detectionstant	on ti	me	Set method	anytime	Access	RW
P05.37	Range	0~10.0	Uı	nit	%	active moment	Immediately	default	0.0
		The jitter is	suppress	ed or	ıly wł	en the period i	s shorter than this t	ime	
DOS 20	Name	Jitter speed	detectio	n va	ılue	Set method	anytime	Access	RO
P05.38	Range	-	Unit Rpm		pm	active moment	Immediately	default	-
DOS 20	Name		Flutter suppression torque output value		Set method	anytime	Access	RO	
P05.39	Range	-	Unit	Q	%	active	Immediately	default	-

10.7 P06 group parameter -Inputs and Outputs Function

D06 01	Name	DI1	Function corregister	ntrol	Set method	anytime	Acce	ss	RW
P06.01	Range	0~99	Unit	-	active moment	Immediately	defaı	ılt	1
	Setti	ng		DI Function Selection					
	0				None				
	1								
	2								
	3								
	4								
	5			Forwa	rd torque lim	nit switch			
	6		N	egative to	orque limit se	elector switch			
	7			Forwar	d speed limit	selection			
	8		Negative speed limit selection						
	9				forward jog	g			

moment

10	reverse jog
11	Speed reference reverse
12	Main speed AB switching
13	Stop of speed
14	Reset drive before downloading ARM program
15	Clear encoder position count
16	Zero position fixed in speed mode
17	Multi-speed speed selection 0
18	Multi-speed speed selection 1
19	Multi-speed speed selection 2
20	Multi-speed speed selection 3
21	Position command prohibition
22	Position command reverse
23	Prohibition of pulse command
24	Electronic gear ratio switching 1
25	clear position error
26	Trigger back to zero
27	Trigger multi-segment positions
28	Multi-segment position selection 0
29	Multi-segment position selection 1
30	Multi-segment position selection 2
31	Multi-segment position selection 3
32	Direction selection for multi-segment locations
33	reserve
34	Home switch input
35	Command pulse and internal position planning
	switching
36	Control mode switch 0
37	Control mode switch 1
38	Enable interrupt fixed-length input
39	release interrupt fixed length
40	Trigger interrupt fixed length
41	The first set of the second set of gain switch
42	reset fault
43	Positive limit switch in position mode
44	Reverse limit switch in position mode
45	Switching between open and closed loop in full closed
	loop mode
46	Reset before FPGA program update
47	Tension compensation direction
48	tracking direction

49	Force maximum JOG compensation
50	Roll diameter calculation is prohibited
51	change roll
52	Initial roll diameter switch
53	Clear the length of feed
54	Force fast tightening
55	Closed loop speed mode disables tension
	compensation
56	Electronic gear ratio switch 2
57	Motor overheating
58	Emergency stop input
59	Internal flip-flop reset
60	Internal trigger set
61	Internal counter counts pulses
62	Clear the internal counter
63	Speed mode UPDOWN mode UP signal
64	Speed mode UPDOWN mode DOWN signal
65	Speed mode UPDOWN mode hold signal
	Return to previous Phase
66	(Tension special: Enable Speed Overlay)
67	AI zero drift automatic correction
	Go to the specified phase
	(Tension special type: closed-loop speed/torque mode
68	switch)
	Jog a fixed position in the positive direction
69	(Tension type: motor rotation direction in closed-loop
	speed mode)
	Reverse jog fixed position
70	(Tension special type: motor rotation direction in
	closed-loop torque mode)
71	reserve
72	Trigger correction current sensor
73	Trigger learning phase
74	return to zero
75	STO activation

	Name	DI2 Fun	ction co	ntrol	Set		A	RW
P06.02	Name	register			method	anytime	Access	KW
P00.02	Range	0~99	Unit	-	active moment	Immediately	default	42
For the s	pecific functions of the DI port, see P06.01		e P06.01	•				

	NI	DI3 Function control			Set		A	RW
P06.03	Name	register			method	anytime	Access	KW
P00.03	Range	0~99	Unit	-	active moment	Immediately	default	0
For the s	e specific functions of the DI port, see P06.0		e P06.01	•				

	Name	DI4 Fun	ction con	ntrol	Set method	anytime	Access	RW
P06.04	Range	0~99	Unit	-	active moment	Immediately	default	0
For the s	pecific functi	ons of the D	port, se					

	Name	DI5 Fun	ction co	ction control Set		anytime	Access	RW
P06.05	Name	re	egister		method	anytime Access		
P00.03	Range	0~99	Unit	-	active moment	Immediately	default	0
For the s	or the specific functions of the DI port, see P06.01.							

D0(0(Name	DI6 Fun	ction co	ntrol	Set method	anytime	Access	RW
P06.06	Range	0~99	Unit	-	active moment	Immediately	default	0
For the s	pecific functi	ons of the D	l port, se	e P06.01	•			

	Name	DI7 Fun	ction co	ction control Se		anytime	Access	RW
P06.07		register			method			10,,
100.07	Range	0~99	Unit	1	active moment	Immediately	default	0
For the s	specific functions of the DI port, see P06.0				•			

	Name	DI8 Fun		ntrol	Set	anytime	Access	RW
P06.08		register			method			
P06.08	Range	0~99	Unit	-	active moment	Immediately	default	0
For the s	or the specific functions of the DI port, see P06.0							

70500	Name	DI9 Fun	ction con	ntrol	Set method	anytime	Access	RW
P06.09	Range	0~99	Unit	-	active moment	Immediately	default	0
For the specific functions of the DI port, see P06.01. This DI is a high-speed DI.								

	Name	DI10 Fu		ontrol	Set	anytime	Access	RW
DOC 10		re	egister		method			
P06.10	Range	0~99	Unit	-	active moment	Immediately	default	0
For the s	For the specific functions of the DI port, see P06.0					high-speed DI.		

P06.13	Name	DI terminal valid state			Set method	-	Access	RO
P00.13	Range	0~1023	Unit	-	active moment	-	default	-

Displayed in decimal format, after conversion to binary format, it contains 0-9 digits, the low-order to high-order indicates the status of digital output terminals DI1~DI10, 0=OFF, 1=ON, the 0th bit corresponds to DI1, •••, the first Bit 9 corresponds to DI10.

P06.14	Name	DI fo	rced inp	ut	Set method	anytime	Access	RW
P00.14	Range	0~1023	Unit	-	active moment	Immediately	default	0

Input in decimal (BCD) format and convert it into binary (Binary), which is the corresponding DIx input signal. For example: P06.14=42(BCD)=0000101010(Binary), it means DI2, DI4 and DI6 terminals are ON.

P06.15	Name	DI termin	nal actua	l level	Set method	-	Access	RO
P00.13	Range	0~1023	Unit	-	active moment	-	default	-

Displayed in decimal format, after conversion to binary format, it contains 0-9 digits, the low-order to high-order indicates the status of digital output terminals DI1~DI10, 0=OFF, 1=ON, the 0th bit corresponds to DI1, •••, the first Bit 9 corresponds to DI10.

P06.16	Name	High-spec	ed DI fil	_	Set method	anytime	Access	RW
P06.16	Range	1~32767	Unit	us	active moment	Immediately	default	10

When the high-speed pulse input terminal is in spike interference, you can filter out the spike interference by setting P06.16. INFn.34 and INFn.40 are high-speed DI signals, and their filtering time is determined by P06.16; other input signals are low-speed DI signals, and their filtering time is determined by P06.17.

P06.17	Name		eed DI f		Set method	anytime	Access	RW
	Range	1~32767	Unit	us	active	Immediately	default	1000

						moment			
D06 21	Name DI1		valid lev	el	Set method	anytime	Access	RW	
P00.21	R	ange	0~1	Unit	-	active moment	Immediately	default	0
		S	etting						
			0		Ac	tive when lov	v level		
		1				ive when hig			

P06.22	N	lame	DI2 v	alid leve	el	Set method	anytime	A	ccess	RW
P00.22	Range 0~1		Unit	ı	active moment	Immediately	de	efault	0	
		S	Setting			Type of leve	el			
			0		Active when low level					
			1 Acti			ive when high	h level			

P06.23	N	lame	DI3 v	alid leve	el	Set method	anytime	A	ccess	RW
P00.23	R	Range 0~1		Unit	-	active moment	Immediately	default		0
		Setting			·	Type of leve				
			0			ive when low ive when high				
			1	1 Acti			h level			

P06.24	N	lame	DI4 v	alid leve	el	Set method	anytime	A	ccess	RW
P00.24	Range 0~1		Unit	-	active moment	Immediately	de	efault	0	
		S	etting			Type of leve	el			
			0		Active when low level					
			1	1 Acti			h level			

P06.25	Name	DI5 v	valid leve	el	Set method	anytime	Access	RW
100.23	Range	0~1	Unit	-	active moment	Immediately	default	0

Setting	Type of level
0	Active when low level
1	Active when high level

P06.26	N	lame	DI6 v	alid leve	el	Set method	anytime	A	ccess	RW
P00.20	R	Range 0~1		Unit	-	active moment	Immediately	de	efault	0
		Setting				Type of leve	el			
			0							
			1		Act	ctive when high level				

P06.27]	Name	DI7 v	alid leve	el	Set method	anytime	A	ccess	RW
P00.27	I	Range 0~1		Unit	ı	active moment	Immediately	default		0
		S	Setting			Type of leve	el			
			0	Active when low level						
			1	Active when high level						

DOC 29	1	Name	DI8 v	alid leve	el	Set method	anytime	A	ccess	RW
P06.28	F	Range 0~1		Unit	-	active Immediately		default		0
		S	etting	tting		Type of leve	el			
			0		Act	ive when low	level			
			1 Acti			ive when higl	h level			

P06.29	N	lame	DI9 v	alid leve	el	Set method	anytime A		ccess	RW
100.29	R	ange	0~1	Unit	-	active moment	Immediately	de	efault	0
		S	etting		Type of level					
			0	Active when low level						
			1		Acti	ive when high	h level			

P06.30	Name	DI10 valid level		vel	Set method	anytime	Access	RW
	Range	0~1	Unit	-	active	Immediately	default	0

				moment			
	S	etting		Type of leve	el		
		0	Act	ive when low	level		
		1	Acti	ve when high	ı level		

P06.40	Name	DO	1, 2 o -	function	n control	Set method	anytime	Access	RW
700.40	Range	0	~2	Unit	-	active moment	Immediately	default	0
	Setting			Type of function					
	0		DO1 and DO2 are output with the functions configured by P06.41 and P06.42 respectively						
	1		DO1, DO2 output A and B pulses respectively						
	2		DO	l output	s the Z poi	nt signal, DO	2 outputs the fun	iction	
	۷				conf	gured by P06	5.42		

P06.41	N	lame	DO1 fur	nction co	ntrol	Set method	anytime	A	ccess	RW
P00.41	R	ange	0~99	Unit	-	active moment	Immediately	de	efault	9
		S	etting	DO function						
		0				None				
		1			The d	rive is being	enabled			
		2			The spec	ed reaches a g	given value			
		3				Slow down	1			
			4			Rising spee	d			
		5			at zero speed					
			6			overspeed				
			7	Forward rotation						
			8	Reverse rotation						
			9	fault output						
			10	F	orward s	peed limit in	torque mode			
			11	N	legative s	peed limit in	torque mode			
			12		Speed	limit in torq	ue mode			
			13		Positio	oning comple	te output			
			14		positio	ning proximi	ity output			
			15	(Origin ze	ro return com	plete output			
			16		Position	error is too la	arge output			
			17	Inte	errupt fix	ed length con	npletion output			
			18		Software limit output					

24	Holding brake output
25	The input command is valid
26	Always OFF
27	Always ON
28	Torque limit output
29	Torque arrives
30	Internal trigger state
31	Internal counter counts arrival
32	Speed is consistent
33	The pulse position command is zero output
34	Roll diameter reaches 2 output
35	The speed command is 0 output.
36	The speed command is 0 and the speed
30	feedback is 0 output
37	Servo is ready to output

	Name	DO2 fun	ction co	ntrol	Set	anytime	Access	RW		
D06 42	rvanic	register			method	anythic	Access	IXVV		
P06.42	Range	0~99	Unit	-	active	Immediately	default	13		
	Tunig.		01111		moment					
Please re	Please refer to P06.41 for the specific functions of the DO port.									

	Nama	Name DO3 function control Set anytime		onsitima	Access	RW				
P06.43	Name	register			method	anythic	Access	KW		
100.43	Range	0~99	Unit	-	active moment	Immediately	default	0		
					moment					
Please re	Please refer to P06.41 for the specific functions of the DO port.									

	Name	DO4 function control register			Set method	anytime	Access	RW		
P06.44	Range	0~99	Unit	-	active moment	Immediately	default	0		
Please re	Please refer to P06.41 for the specific functions of the DO port.									

	Name DO5 function control				Set	amy time a	Aggagg	RW			
D06 45	P06.45	register			method	anytime	Access	KW			
P00.43	Range	0~99	Unit	-	active moment	Immediately	default	0			
Please re	Please refer to P06.41 for the specific functions of the DO port.										

P06.46	Name	DO6 function control	Set	anvtime	Access	RW
1 00.40	Ivallic	register	method	anytime	Access	KW

	Range	0~99	Unit	-	active moment	Immediately	default	0
Please re	efer to P06.41	for the speci	fic funct	tions of tl	ne DO port.			

P06.49	Name	DO termi	nal valio	l state	Set method	-	Access	RO
P00.49	Range	-	Unit	-	active moment	-	default	-

Displayed in decimal format, after conversion to binary format, it contains 0-5 digits, the low digits to high digits indicate the status of digital output terminals DO1~DO6 in turn, 0=OFF, 1=ON, the 0th bit corresponds to DO1, ..., the first Bit 5 corresponds to DO6.

P06.50	Name	DO fo	orce outp	out	Set method	anytime	Access	RW
100.30	Range	0~63	Unit	-	active moment	Immediately	default	0

Displayed in decimal format, after converting to binary format, it contains 0-5 digits, the low-order to high-order indicates the state of digital output terminals DO1~DOI6, 0=OFF, 1=ON, the 0th bit corresponds to DO1, ..., the first Bit 5 corresponds to DO6.

D06 51	Name		DO1	valid lev	rel	Set method	anytime	A	ccess	RW
P06.51 Range		lange	0~1	Unit	-	active moment	Immediately	de	efault	0
		Setting			Level validity					
			0	Active low level						
			1 .			Active high le	evel			

D06 52	N	lame	DO2	valid lev	rel	Set method	anytime	A	ccess	RW
P06.52 Ran		ange	0~1	Unit	-	active moment	Immediately	d€	efault	0
		Setting		Level validity						
		0		Active low level						
			1	Active high level						

P06.53	Name	DO3	valid lev	rel	Set method	anytime	Access	RW
P00.33	Range	0~1	Unit	-	active moment	Immediately	default	0

Setting	Level validity
0	Active low level
1	Active high level

P06.54	N	lame	DO4	valid lev	el	Set method	anytime	A	ccess	RW
100.34	Range		0~1	Unit	ı	active moment	Immediately	de	efault	0
	Setting				Level validi	ty				
			0	Active low level						
			1			Active high le	evel			

P06.55	ì	Name DO5			el	Set method	anytime	Acces	s RW	V
		Range	0~1	Unit	-	active moment	Immediately	defaul	t 0	
	Setting									
			1							

P06.56	N	Name	DO6	valid lev	el	Set method	anytime	Ac	ecess	RW
P00.30	Range 0~1		0~1	Unit	ı	active moment	Immediately	de	fault	0
	Setting			Level validity						
		0			1	Active low level				
			1 .			Active high le	evel			

	Name	AI1 input	voltage		Set method	-	Access	RO
P06.61	Range	0~10000	Unit	mV	active moment	-	default	1

	Name	AI2 input	AI2 input voltage			-	Access	RO
P06.62	Range	0~10000	Unit	mV	active moment	-	default	-

	Name	AI3 input	voltage		Set method	-	Access	RO
P06.63	Range	0~10000	Unit	mV	active moment	1	default	-

	Name	AI1 of	fset		Set method	anytime	Access	RW
P06.64	Range	-10000~10000	Unit	mV	active moment	Immediately	default	t 0
P06.65	Name	AI1 Dea	dband		Set method	anytime	Access	RW
100.03	Range	-5000~5000	Unit	mV	active moment	Immediately	default	0
P06.66	Name	AI1 magnif	ication		Set method	anytime	Access	RW
1 00.00	Range	-3276.7~3276 .7	Unit	%	active moment	Immediately	default	100.0
DOC 67	Name	_	AII low-pass filter time constant			anytime	Access	RW
P06.67	Range	0~32767	0~32767 Unit ms			Immediately	default	2
D06.60	Name	AI1 Zero	AI1 Zero Drift			anytime	Access	RW
P06.68	Range	-10000~10000	Unit	mV	active moment	Immediately	default	0
D06.60	Name	AI2 of	ffset		Set method	anytime	Access	RW
P06.69	Range	-10000~10000	Unit	mV	active moment	Immediately	default	0
						•	•	
DOC 70	Name	AI2 Dea	dband		Set method	anytime	Access	RW
P06.70	Range	0~5000	0~5000 Unit mV			Immediately	default	0
						-		
DOC 71	Name	AI2 magnification			Set method	anytime	Access	RW
P06.71	Range	-3276.7~3276 .7	Unit %			Immediately	default	100.0
P06.72	Name	AI2 low pass		me	Set method	anytime	Access	RW

		Range	0~3276	7	Unit	ms	active moment	Immediately	default	2	
			ı								
D0.6.7	72	Name	AI2	2 zero	o drift		Set method	anytime	Access	RW	
P06.	/3	Range	-10000~10	000	Unit	mV	active moment	Immediately	default	0	
D0.6.4	70	Name	Automatic correction	zero	drift	anytime	Access	RW			
P06.7	/9	Range	0~6	Ur	nit	-	active moment	Immediately	default	0	
		Setting			AI au	itoma	tic correction	of zero drift			
		0		reserve							
		1	Ir	Immediately automatically correct AI1 zero drift once							
		2		Immediately automatically correct AI2 zero drift once							
		3						3 zero drift once			
				•	,		s not support				
		4	Imme	diate	ly auton			I1 AI2 AI3 zero	drift once		
		5			-			ne zero drift of t			
					•		sensor once	;			
		6		Imi	nediate	ly clea	ar the calibra	the calibration current sensor			
P06.8	80	Name	A	O1 o	ffset		Set method	anytime	Access	RW	
P00.0	6 0	Range	-10000~10	000	Unit	mV	active moment	Immediate ly	default	0	
P06.8	Q1	Name	AO1 m	ultip	lying ra	te	Set method	anytime	Access	RW	
FU0.8	01	Range	-1000.0~1000. 0 Unit %				active moment	Immediat ely	default	100	
		Name	The valu				Set method	anytime	Access	RW	
P06.8	84	Range	-10000~10		Unit	-	active moment	Immediately	default	0	

Setting	type of output parameter
0	Actual speed, 1mv corresponds to 1rpm
1	Speed loop speed command, 1mv corresponds to 1rpm
2	Torque command, 1mv corresponds to 0.1% rated torque
2	Position error before filtering, 1mv corresponds to 1 motor
3	encoder pulse
4	Position error after filtering, 1mv corresponds to 1 motor
4	encoder pulse
5	Feed forward speed, 1mv corresponds to 0.1% rated speed
6	Position command speed, 1mv corresponds to 1rpm
7	Filtered position command speed, 1mv corresponds to
7	1rpm
0	Instantaneous value of phase A current, 1mV corresponds
8	to 0.1A
9	Instantaneous value of B-phase current, 1mV corresponds
9	to 0.1A
10	Torque feedback, 1mv corresponds to 0.1% rated torque
11	Current rms value, 10V corresponds to the rated current of
11	the driver
12	Current rms value, 10V corresponds to the rated current of
12	the motor
12	The absolute value of the motor display speed, 10V
13	corresponds to the rated speed
1.4	The absolute value of the real-time speed of the motor,
14	1mV corresponds to 1rpm

D0(0(Name Internal amplifier ter input AD minimu				Set method	anytime	Access	RW
P06.86	Range	0~4095	Unit	-	active moment	Immediately	default	0

	Name Internal amplifier ten					anytime	Access	RW
P06.87	Range	0~4095			active	Immediately	default	4095
	Range	0-70/3	Onit	-	moment	immediately	derauit	70/3

	Nama	Internal ampli	fier tens	sion	Set	anytime	Aggagg	RW
P06.88 Name		input filter	ing time	;	method	anytime	Access	KW
100.88	Range	0~32767	Unit	ma	active	Immediately	default	20
	Kange	0~32707	Ollit	ms	moment	Illinediately	delauit	20

DOC 90	Name	Internal amplif		sion	Set method	-	Access	RO
P06.89	Range	0~4095	0~4095 Unit -		active moment	-	default	-
	Name	Percentage of fir	nal AI1	input	Set	_	Access	RO
P06.91	Tvaine	valu	e		method	_	7100033	RO
100.91	Range	-3276.7~3276.7	Uni	t %	active	_	default	_
	Kange	-3270.7~3270.7	Om	1 /0	moment	_	uciauit	_
	Name	Percentage of fir	nal AI2	input	Set		Access	RO
P06.92	Name	value			method	-	Access	KO
P00.92	Danga	-3276.7~3276.7 Unit %		active		default		
	Range	-32/0./~32/0./	Uni	70	moment	_	deraurt	-

10.8 P07 group parameters - loop control parameters

	Maria	Current lo	op propo	ortional	Set		A	DW
D07.01	Name		gain		method	anytime	Access	RW
P07.01	Damas	0~32767	Unit		active	I	default	100
	Range	0~32/0/	Unit	-	moment	Immediately	delault	100
	Name	Current loop integral gain			Set	onvitimo	Access	RW
P07.02	Name	Current loop integral gain			method	anytime	Access	KW
P07.02	Damas	0 22767 Unit			active	I	J. f., 14	20
	Range	0~32/6/	0~32767 Unit -			Immediately	default	20
	Name	Speed loo	p propo	rtional	Set	anytime	Access	RW
P07.03	Ivallic		gain		method	anythic	Access	IXW
107.03	Range	0~32767	Unit	_	active	Immediately	default	600
	Kange	0,~32,707	Oint	_	moment	Immediately	derauit	
	Name	Speed lee	C11:-			anytime	Access	RW
P07.04	Name	Speed loop integral gain			method	anytime	Access	KW
ru/.u4	Damas	0~32767	Unit		active	Immodiately	default	50
	Range	0~32/0/	Ullit	_	moment	Immediately	derauit	30

	Name	Speed lo	op differ	ential	Set	anytime	Access	RW
P07.40	Range	0~32767	gain Unit	-	method active moment	Immediately	default	50
					moment			
P07.41	Name		d torque d percen		Set method	anytime	Access	RW
PU7.41	Range	0~100	0~100 Unit %			Immediately	default	0
		-						
P07.81	Name	Reve feedforw	erse torquard perco		Set method	anytime	Access	RW
FU/.81	Range	0~100	Unit	%	active moment	Immediately	default	0
	1							
D07.42	Name	Speed loogain	op propo percenta		Set method	anytime	Access	RW
P07.42	Range	0~100	0~100 Unit %			Immediately	default	0
			•					
D07.05	Name	Position lo	oop prop gain	ortional	Set method	anytime	Access	RW
P07.05	Range	0~32767	Unit	-	active moment	Immediately	default	200
D07.06	Name	Percentage maximum	-	- 1	Set method	anytime	Access	RW
P07.06	Range	0~300.0	Unit	%	active moment	Immediately	default	100.0
-				·				
D07.07	Name	Output v	oltage fi	Itering	Set method	anytime	Access	RW
P07.07	Range	0~300.0	0~300.0 Unit ms			Immediately	default	0
						1		
DOT 00	Name	Torque fe	edforwar e constar		Set method	anytime	Access	RW
P07.08	Range	0~63	Unit	ms	active moment	Immediately	default	10
This value	ue is the ang	ular accelerat	ion filter	time du	ring torque fe	eedforward.		-

	Name	Speed fee	dforward	d filter	Set	anytim a	Access	RW
D07.00	Name	time	constan	t	method	anytime	Access	KW
P07.09					active			
	Range	0~63	Unit	-	moment	Immediately	default	10
		Torque	feedforv	word	Set			
	Name	1	efficient	varu		anytime	Access	RW
P07.10		COE	Incient		method			
	Range	0~32767	Unit	_	active	Immediately	default	0
					moment			
	Name	Speed f	Speed feed forward			anytime	Access	RW
D07.11	Name	coe	efficient		method	anythine	Access	IXVV
P07.11	_				active		101	
	Range	0~300.0	Unit	-	moment	Immediately	default	50.0
					Set			
	Name	Torque	Torque filter type		method	anytime	Access	RW
P07.12								
	Range	0~4	0~4 Unit -		active	Immediately	default	0
		·			moment			
	S	Setting		ī	Torque filter t	ype		
		0		1	ow pass filter	ring		
		1			notch filter			
		2			No filtering			
		3	Comb	sinad law		<u></u>		
						g and notch filte		
		4	Auto	omatic ca	liculation of 1	filter parameters		
	Name	Torque low	-pass fil	ter time	Set	anytime	Access	RW
P07.13	runic	co	onstant		method	anytime	7100035	1011
P07.13	D	0.227.67	TT		active	T 1: . 1	1 C 1	0.00
	Range	0~327.67	Unit	ms	moment	Immediately	default	0.80
				I				
		Note	h Filter	1	Set			
	Name		Frequen		method	anytime	Access	RW
P07.14		INOICII	requei					
	Range	0~1000	~1000 Unit Hz		active	Immediately	default	0
					moment			
						Γ		
	Name	notch filter 1		Set	anytime	Access	RW	
P07.15	1 (dillo	note	ch depth		method		110000	1011
10/.13	D	0 100 0	TT'	0/	active	Image - 11: 4 1	4 a C - 1 t	10.0
1	Range	0~100.0	Unit	%	moment	Immediately	default	10.0

		NT : 1 (°1) 1						
	Name		ch filter 1		Set	anytime	Access	RW
P07.16		note	ch width		method	,		
	Range	0~100.0	Unit	%	active	Immediately	default	50.0
	_				moment	-		
			1 (*1. 0		Q .			
	Name		ch filter 2		Set	anytime	Access	RW
P07.17		notch	frequen	cy I	method			
	Range	0~1000	Unit	ms	active	Immediately	default	0
					moment			
			1 ("1, "	.	C 4			
	Name		ch filter 2		Set method	anytime	Access	RW
P07.18		Hou	ch depth		active			
	Range	0~100.0	Unit	%	moment	Immediately	default	50.0
					moment			
		note	h filter 2)	Set			
	Name	notch filter 2			method	anytime	Access	RW
P07.19		Hote	en width		active			
	Range	0~100.0	Unit	%	moment	Immediately	default	50.0
		Note	ch filter 3	3	Set			
	Name	Notch	frequenc	eies	method	anytime	Access	RW
P07.44		0.1000	TT 1		active	T 11 . 1	1.0.1	
	Range	0~1000	Unit	Hz	moment	Immediately	default	0
	N	Note	h Filter	3	Set	4:	A	DW
P07.45	Name	Note	ch Depth	1	method	anytime	Access	RW
P07.43	Range	0~100.0	Unit	%	active	Immediately	default	10.0
	Range	0~100.0	Oilit	/0	moment	Illiniculately	uciauit	10.0
	Name	Note	ch filter 3	3	Set	anytime	Access	RW
P07.46	Ivallic	Notch width		method	anythic	Access	ICVV	
107.40	Range	0~100.0	Unit	%	active	Immediately	default	50.0
	Tuiigo	0 100.0	Jiii	/ 0	moment	Immodiatory	aoiuait	
						T		
	Name	Notch Filter 4		Set	anytime	Access	RW	
P07.47		Notch	Frequen	icy	method	J		
'''	_	0 1000	T India	Hz	active	Immediately	default	
	Range	0~1000	Unit			Immediateiv	defaun	0

Po5 40	Name		h Filter		Set method	anytime	Access	RW	
P07.48	Range	0~100.0	Unit	%	active moment	Immediately	default	10.0	
D07.40	Name		ch filter 4 ch width		Set method	anytime	Access	RW	
P07.49	Range	0~100.0	~100.0 Unit %			Immediately	default	50.0	
							'		
D07.20	Name	Gain adjı	Gain adjustment mode			anytime	Access	RW	
P07.20	Range	0~5				Immediately	default	0	
	Setting			Gain a	ndjustment m	ode			
	0		fixed	03 to P07.05					
	1		Firs						
	2	Automa	Automatically calculate a set of gains based on rigidity level						
			and load inertia (normal mode)						
	3	Automa	•		a set of gains	based on rigidit	ty level		
	4	The firs				proportional gai	n is in		
				_	andwidth tim				
	5	No adjust	tment re	quired, co	ontrol accord	P07.78			
P07.21	Name	The secon		_	Set method	anytime	Access	RW	
PU7.21	Range	0~32767	Unit	-	active moment	Immediately	default	800	
P07.22	Name	The secon loop in	nd set of ntegral g	_	Set method	anytime	Access	RW	
10/.22	Range	0~32767)~32767 Unit -			Immediately	default	10	
D07.22	Name		The second set of position loop proportional gain			anytime	Access	RW	
P07.23	Range	0~32767	Unit	-	active moment	Immediately	default	200	

P07.24	Name	Gain switching condition			Set method	anytime	Access	RW
	Range	0~6	Unit	-	active moment	Immediately	default	0

G 11:	
Setting	Gain switching condition
0	IO switching; INFn.41 switching, use the second set of gains when valid.
	Switch to the second set of gains when the torque command is large;
	When the torque command is greater than (gain switching level P07.25 +
1	gain switching delay P07.26), switch to the second set of gains; when the
	torque command is less than (gain switching level - gain switching
	delay), switch back to the first set of gains gain.
	Switch to the second set of gains when the speed given command is
	large;
2	When the speed command is greater than (gain switching level (rpm) +
2	gain switching delay (rpm)), switch to the second set of gains; if the
	speed command is less than (gain switching level - gain switching delay
	time), switch back to the first set of gains.
	Switch to the second set of gains when the acceleration command is
	large;
3	When the acceleration command (rpm/s) is greater than (gain switching
3	level + gain switching delay), switch to the second set of gains; when the
	acceleration command (rpm/s) is less than (gain switching level - gain
	switching delay), switch back to the first set of gains set of gains.
	Switch to the second set of gains when the speed error is large;
	When the speed error (rpm) is greater than (gain switching level + gain
4	switching time delay), switch to the second set of gains; when the speed
	error (rpm) is less than (gain switching level - gain switching delay
	time), switch back to the first set of gains.
	Switch to the second set of gains when the position error after filtering is
	large;
	When the filtered position error (unit is motor encoder pulse) is greater
5	than (gain switching level + gain switching delay), switch to the second
	set of gains; the filtered position error (unit is motor encoder pulse) is
	less than (gain switching level - gain switch time delay), switch back to
	the first set of gains.
6	When positioning is completed, switch to the second set of gains, and
U	switch to the first set of gains without positioning.

P07.25	Name	Gain sw	itching l	level	Set method	anytime	Access	RW
	Range	0~32767	Unit	-	active	Immediately	default	0

P07.32

Range

 $0 \sim 32767$

Unit

					moment			
P07.26	Name	Gain switching time delay			Set method	anytime	Access	RW
	Range	0~32767	Unit	-	active moment	Immediately	default	0
P07.27	Name	Gain switching time			Set method	anytime	Access	RW
	Range	0~32767	Unit	ms	active moment	Immediately	default	10
The two	gain switchin	ng are smooth	n switchi	ing, and t	his paramete	r is the smoothir	ng time para	meter.
P07.28	Name	rigid setting			Set method	anytime	Access	RW
	Range	0~31	Unit	-	active moment	Immediately	default	10
Set rigid	ity of the mo	tor						
					,			_
D07.20	Name	Load inertia coefficient			Set method	anytime	Access	RW
P07.29	Range	0~32767	Unit	-	active moment	Immediately	default	400
Load ine	rtia coefficie	nt						•
D07.20	Name	Zero speed speed gain reduction/amplification			Set method	anytime	Access	RW
P07.30	Range	0~3276.7	Unit	%	active moment	Immediately	default	50.0
P07.31	Name	Zero-speed position gain reduction/amplification			Set method	anytime	Access	RW
	Range	0~3276.7	Unit	%	active moment	Immediately	default	100.0
				I		<u> </u>		
	Name	Zero speed	decay th	reshold	Set method	anytime	Access	RW

When the speed rpm is less than this value, the gain of the speed loop, position loop and current loop will be attenuated/amplified according to P07.30, P07.31 and P07.34 respectively.

rpm

active

moment

Immediately

default

10

	Name Range	Inertia s	self-learr	ning	Set				
P07.33		accele	eration a	nd	method	anytime	Access	RW	
		decele	ration tii	ne	memod				
		Range 0~32767 Unit		ms	active	Immediately	default	500	
	Range	032707	Onit	1113	moment	Illimediately	uciauit	300	

	Name Zero-speed current gain reduction				Set method	anytime	Access	RW
P07.34	Range	0~3276.7	Unit	%	active moment	Immediately	default	0.0

Range 0~1 Unit % active moment Immediately default 0	P07.35	Name	Inertia self-learning option			Set method	anytime	Access	RW
		Range	0~1	Unit	%		Immediately	default	0

Setting	Inertia self-learning option
0	After learning the inertia, only learn the torque feedforward coefficient
	After learning the inertia, automatically calculate a set of gains according
1	to the rigidity setting and the learned inertia coefficient and write to
	P07.03 P07.04 P07.05

	Name	Vibration Threshold		Ü	Set method	anytime	Access	RW
P07.38		Timeshor		luge	active			
	Range	0~32767	Unit	%	moment	Immediately	default	100

P07.39	Name	e Vibration monitoring value			Set method	anytime	Access	RW
107.39	Range	0~32767	Unit	-	active moment	Immediately	default	0

P07.50	Name	torque co	ompensa node	tion	Set method	anytime	Access	RW
P07.30	Range	0~4	Unit	-	active moment	Immediately	default	0

Setting	torque compensation mode
0	Compensate a fixed value P07.53
1	Compensation via AI1
2	Compensation via AI2
3	Compensation via AI3 (not supported on hardware)
4	Automatic compensation through compensation coefficient

P07.43	Name	Torque con	npensation	on gain	Set method	anytime	Access	RW
107.43	Range	10~1000	Unit	-	active moment	Immediately	default	100
P07.89	Name	Torque con	npensati	on gain	Set method	anytime	Access	RW
107.89	Range	10~1000	Unit	-	active moment	Immediately	default	100
P07.51	Name	Torque compensation filter time			Set method	anytime	Access	RW
P07.31	Range	0~32767	Unit	ms	active moment	Immediately	default	10
D07.52	Name	Torque C Inertia	Compens Coeffici		Set method	anytime	Access	RW
P07.52	Range	0~32767				Immediately	default	0
D07.52	Name	Torque o	ompens ed value	ation	Set method	anytime	Access	RW
P07.53	Range	-32767~ 32767	Unit	-	active moment	Immediately	default	0
								·
D07.54	Name	Torque con	npensatio	on gain	Set method	anytime	Access	RW
P07.54	Range	-32767~ 32767	Unit	%	active moment	Immediately	default	100
D07.55	Name	-	low frequency rejection notch filter frequency			anytime	Access	RW
P07.55	Range	0~1000	0~1000 Unit Hz			Immediately	default	0
		<u> </u>			<u> </u>			
D07.74	Name	Low frequ	ency rejuth	ection	Set method	anytime	Access	RW
P07.56	Range	0~100.0	Unit	%	active moment	Immediately	default	10.0

	Name	Low frequencts	iency rej ch width		Set method	anytime	Access	RW	
P07.57	Range	0~100.0	Unit	%	active moment	Immediately	default	50.0	
								•	
D07.50	Name	position co	ommand frequenc		Set method	anytime	Access	RW	
P07.58	Range	0~1000	0~1000 Unit Hz			Immediately	default	0	
D07.50	Name	Position c	ommand er depth	notch	Set method	anytime	Access	RW	
P07.59	Range	0~100.0				Immediately	default	10.0	
D07.60	Name	Position c	ommand er width	l notch	Set method	anytime	Access	RW	
P07.60	Range	0~100.0	Unit	%	active moment	Immediately	default	50.0	
'			1	•					
D07.61	Name	Advanced se	control f	unction	Set method	anytime	Access	RW	
P07.61	Range	0~9999	Unit	-	active moment	Immediately	default	0.0	
AAA.B 1	format. Ordin	ary feedforw	ard cont	rol when	AAA=0; sin	gle-inertia mod	lel predictio	n when	
AAA=1; double-inertia model prediction when AAA=2; single-inertia model prediction when									
AAA=3 (no model prediction position filter), double-inertia model when AAA=4 Model									
prediction (no model prediction position filter), when B=0, the continuous vibration suppression									
function is invalid, and when B=1, the continuous vibration suppression function is valid.									
	Name	Model pr	rediction	gain	Set	anytime	Access	RW	

	Name Model prediction gain				Set method	anytime	Access	RW
P07.62	Range	1.0~2000.0	Unit	-	active moment	Re-enable takes effect	default	50.0
			'					
	Name	Model Predicted			Set	any tim a	Access	RW
	Name	Compensation			method	anytime	Access	KW
P07.63					active	Re-enable		
	Range	50.0~200.0	Unit	-	moment	takes	default	100.0
					moment	effect		

	Name	The mod	_	cts	Set	anytime	Access	RW
P07.64	Range	0~3000.0	Unit	-	active moment	Re-enable takes effect	default	100.0
	Name	Model pre	dicts inv	erse	Set method	anytime	Access	RW
P07.65	Range	0.0~3000.0	Unit	-	active moment	Re-enable takes effect	default	100.0
	Name	Model pred of supp	icts frequ oression	-	Set method	anytime	Access	RW
P07.66	Range	1.0~250.0	Unit	-	active moment	Re-enable takes effect	default	50.0
	Name	Model pred of supp	icts frequeression 2	-	Set method	anytime	Access	RW
P07.67	Range	1.0~250.0	Unit	-	active moment	Re-enable takes effect	default	50.0
	Name	The model	-		Set method	anytime	Access	RW
P07.68	Range	0~3000	Unit	-	active moment	Re-enable takes effect	default	100
		T						
	Name	Model pre	edicts 2 g	gain	Set method	anytime	Access	RW
P07.69	Range	1.0~2000.0	Unit	-	active moment	Re-enable takes effect	default	50.0
	Name	Model P Comp	rediction ensation		Set method	anytime	Access	RW
P07.70	Range	50.0~200.0	Unit	-	active moment	Re-enable takes effect	default	100.0

		I						
	Name	continuo	us vibrat	ion	Set	anytime	Access	RW
P07.71	Tuille	suppression	on freque	ency	method	any time	7 ICCCSS	10,,
107.71	D	1 2000	TT '4		active	T 1' 4 1	1 C 1	100
	Range	1~2000	Unit	-	moment	Immediately	default	100
			•		1			
		Continuo	us vibrat	ion				
	Name	suppression inertia			Set	anytime	Access	RW
P07.72			ensation		method		110000	
10,1,7		<u>-</u> -			active			
	Range	1~1000	Unit	-	moment	Immediately	default	100
					moment			
		C	X 7:1	· · · · ·				
		Continuo			G .			
	Name		sion Spe		Set	anytime	Access	RW
P07.73		Feedback (•	ation	method			
		Perc	entage					
	Range	0~300	Unit	%	active	Immediately	default	0
	runge	0 200	Cinc	/ •	moment		acraar	Ü
	Continuous Vibration							
	Nomo	Suppression Low Pass			Set			DW
205.54	Name	Filter Time Constant Compensation			method	anytime	Access	RW
P07.74								
	_	10.10			active			
	Range	-10~10	Unit	-	moment	Immediately	default	0
						<u> </u>		
		Continuo	us vihrat	ion				
		suppressi			Set			
	Name	filtering to			method	anytime	Access	RW
P07.75		_	ensation		memod			
		Comp	CiisaiiOil		ootiva			
	Range	-10~10	Unit	-	active	Immediately	default	0
					moment			
	Continuous vibration				~			
	Name		sion spec		Set	anytime	Access	RW
P07.76		feedback o	•	ation	method			
207.70		perce	entage 2					
	Range	0~300	Unit	%	active	Immediately	default	0
					moment			

P07.77	Name	Continuo suppresses l freq			Set method		anytime	Access	RW
	Range	1~5000	Unit	-	active moment	Iı	nmediately	default	2000
P07.78	Name	No adjustm	ent para	meters	Set method		anytime	Access	RW
107.76	Range	0.0~7.7	Unit	-	active moment	Iı	nmediately	default	0.0
A.B format. A refers to the rigidity level, the setting range is 0-7, generally 4 or less. But the inertia level, the setting range is 0-7, generally about 4								ess. B refer	s to
P07.79	Name	Position mode acceleration compensation coefficient			Set method		anytime	Access	RW
20,779	Range	-32767~32 767 Unit -			active moment	Iı	nmediately	default	0
P07.80	Name	Position mo		Set method		anytime	Access	RW	
	Range	-32767~32 767	Unit	-	active moment	Iı	nmediately	default	0
D07.00	Name		speed lo	-	Set metho	od	-	Access	RO
P07.90	Range	0~32767	Unit	-	active moment		-	default	-
P07.91	Name	Actual spe	ed loop i gain	integral	Set metho	d	-	Access	RO
107.51	Range	0~32767	Unit	-	active moment		-	default	-
			•.•				1		
P07.92	Name	· ·	Actual position loop proportional gain			d	-	Access	RO
201.72	Range	0~32767 Unit -			active moment		-	default	-
		Г							
P07.93	Name	Final value of torque compensation			Set metho	d	-	Access	RO

	Range	0~3276.7	Unit	-	active moment	-	default	-
Name Proportional gain of recommended current loop				Set method	-	Access	RO	
P07.95	Range	0~32767 Unit		-	active moment	-	default	-
D07.06	Name	Recommen of cu	ded inte		Set method	-	Access	RO
P07.96	Range	0~32767	Unit	-	active moment	-	default	-

10.9 P08 group parameters - communication parameters

P08.16	N	lame	Torque o	comm give		ion	Set method		anytime	1	Access	RW
100.10	R	ange	-3276.7~32	276.7	Uni	t -	active moment		Immediately	′ (default	0.0
P08.17	N	lame	Speed com	muni	cation	given	Set method		anytime	1	Access	RW
FU0.17	R	ange	-32767~32	-32767~32767 Unit -			active moment		Immediately	7 (default	0
	N	lame	position	communication given			Set method		anytime	1	Access	RW
P08.18	Range		-21474836 ~ 21474836	·	Unit	-	active moment		Immediately	7	default	0
										,		
D00 20	N	lame	Modbus ba	ud ra	te regi	sters	Set method		anytime	A	ccess	RW
P08.20	R	ange	0~5	0~5 Unit bps			active moment	I	mmediately	d	efault	1
		S	etting	etting Mo				rat	e			
			0				4800					
			1									
			2									
			3				38400					

4	57600
5	115200
	I

P08.21 Name Range	Name		Modbus data format			anytime	Access	RW
		registers			method			
	Range	0~3	Unit	_	active	Reset takes	default	1
	8				moment	effect		_
	C	-44 ¹		1.1	. 11 1.4. C.			

Setting	Modbus data format						
0	No parity, 2 stop bits						
1	No parity, 1 stop bit						
2	Even parity, 1 stop bit						
3	Odd parity, 1 stop bit						

This parameter is valid when reset.

P08.22		lame		ress access high w byte order		Set method	anytime	Access	RW
	R	ange	0~1	Unit	-	active moment	Immediately	default	1
		Setting 0		Byte		nen 32-bit add	dress is accessed	d	
			1			Low 16 bits f			

P08.23	Name	Modbus slav	ve addre	ss	Set method	anytime	Access	RW
P06.23	Range	1~255	Unit	-	active moment	Immediately	default	1

	Name	Modbus fau	lt regist	er	Set method	-	Access	RO
P08.24	Range	0~32767	Unit	-	active moment	-	default	-

	Name	Transmit FI	FO byte	Transmit FIFO bytes			Access	RO
P08.25	Range	0~32767	Unit	-	active	-	default	-
					moment			

P08.26	Name	Monitor port baud rate	Set method	anytime	Access	RW	
--------	------	------------------------	---------------	---------	--------	----	--

R	ange	0~2	Unit	bps	active moment	Reset takes effect	de	efault	2
	S	etting		RS232	monitor port	baud rate			
		0			9600				
	1		38400						
	2		115200						

DOS 27	Name	MODBUS response delay character cycle (character time)			Set method	anytime	Access	RW
P08.27	Range	0~32767	Unit	-	active moment	Reset takes effect	default	0

D00 20	Name Range		RS232 mo	•	-	Set method	anytime	Access	RW
P08.29			0~1	Unit	-	active moment	Immediately	default	0
		S	etting	RS232	2 monitor	ring port to se	end curve or ser	nd	
			0	sending curve					
			1	Send a text					

	N	lame	Choose AR		•	Set	anytime	A	ccess	RW
D08 20	08.30		PN serial port			method				
P08.30	p	ange	0~1	Unit -		active	Reset takes	d	efault	0
	Range		0 1	Ont		moment	effect	u	ciauit	0
									I	
		S	etting	Cho	ose ARM	serial port o	r PN serial port			
		0				ARM				
	1		PN							

DO9 21	Name	Initial valu P	e of PN 930	servo	Set method	anytime	Access	RW
P08.31	Range	0~10	Unit	-	active moment	Immediately	default	0

P00 22	Name	PN commun	ication pensation		Set method	anytime	Access	RW
P08.32	Range	0~1000	Unit	-	active moment	Immediately	default	0

D00 40	Name	CAN	bus baud	rate	Set method	l	anytime	Access	RW	
P08.40	Range	125~1000	Unit	Kbps	active momen	t]	Immediately	default	500	
D00 41	Name	CAN	node nun	nber	Set method	l	anytime	Access	RW	
P08.41	Range	0~127	Unit	-	active momen		Immediately	default	0	
D00 42	Name		e custom 4	102	Set method	a	anytime	Access	RW	
P08.42	Range	0~1	Unit	-	active moment	Im	mediately	default	0	
	Set	tting		Enable	custom 402) prot	rocol			
		0			standard 40	_				
		1	Dono		standard 40			10		
		1	Do no							
				11100	dified 402 p	10100	UI			
					G .					
P08.44	Name	SDC	byte orde	er	Set method	a	anytime	Access	RW	
100.11	Range	0~1	Unit	-	active moment	Im	mediately	default	0	
	Set	tting			SDO byte or	rder				
		0			lard SDO by		der			
		1			SDO byte o					
		1		Standard	SDO byte c	nuci	icverse			
P08.49	Name	_	n bus resta servo enc				-	Access	RO	
1 00.49	Range	-	Unit - active - defar			default	-			
		1		-						
		CANope	n bus tran	smit buff	er er					
	_	occupies space or Profinet servo	CANopen bus transmit buffer occupies space or Profinet serv	occupies space or Profinet servo	Set		_	_	Access	RO
P08.50		_	coder G1S		metl	nod				
	_	ļ								
	Range	-	Unit	-	acti mon		-	default	-	

P08.51	Name	CANopen/Pr fram	ofinet be count	us send	Set method	-	Access	RO
	Range	-	Unit	-	active	-	default	1

						moment			
	Name		-	Profine		Set	-	Access	RO
P08.52	Range	re -	ceive ii	Unit	-	method active moment	-	default	-
						moment			
P08.53	Name		count c		ve frame ler status	Set method	-	Access	RO
	Range	-	- Unit			active moment	-	default	-
P08.54	Name		CANopen bus JITTER or encoder command G1CMD			Set method	-	Access	RO
100.34	Range	-		Unit	-	active moment	-	default	-
D00 55	Name	Extrapolation speed			eed	Set method	-	Access	RO
P08.55	Range	-	- Unit		Jser its/Sec	active moment	-	default	-
		•							
D00.57	Name	In	iterpola	tion spe	eed	Set method	-	Access	RO
P08.57	Range	-	Unit		Jser its/Sec	active moment	-	default	-
P08.59	Name		filtere	d speed	I	Set method	-	Access	RO
100.39	Range	-	Unit		Jser its/Sec	active moment	-	default	-
D00 (1	Name	Ext	rapolat	ion pos	ition	Set method	-	Access	RO
P08.61	Range	-	Unit User Un		r Units	active moment	-	default	-
D00 63	Name	int	erpolat	ed posi	tion	Set method	-	Access	RO
P08.63	Range	-	Unit	Use	er Units	active moment	-	default	-

	Name	Ex	xtrapola	tion error	Set	-	Access	RO
P08.65				I	method			
	Range	-	Unit	User Units	active	-	default	-
					moment			
	Mana		.4 1 - 4	·	Set		A	DO
D00 67	Name	1111	nerpoiai	ion error	method	-	Access	RO
P08.67	_				active			
	Range	-	Unit	User Units	moment	-	default	-
					Set			
	Name		contro	l error	method	-	Access	RO
P08.69								
	Range	-	Unit	User Units	active	-	default	-
					moment			
		1						
	Name true error		error	Set	_	Access	RO	
P08.71	Tunne	1100 0110		method		7100035	RO	
100.71	D		T T 14	User Units	active		Access	
	Range	-	Unit	User Units	moment	-	delault	-
						1		
					Set			
	Name	Pred	licted po	sition error	method	-	Access	RO
P08.73					active			
	Range	-	Unit	User Units	moment	-	default	-
					moment			
			4-4	1 - £41.	C ,			
	Name			ord of the	Set	-	Access	RO
P08.74		CA	Nopen40	02 protocol	method			
	Range	_	Unit	_	active	_	default	_
	Tungo		OIII		moment		aoiaan	
	N	г/		LUTTED	Set		A -	
Doc 77	Name	ECAT PDI JITTER		method	-	Access	RO	
P08.75				active				
	Range	-	Unit	it 3.556	moment	-	default	-
					Inchient			

	Name	Е	CAT BI	T STATE	Set method	-	Access	RO
P08.76	Range	_	Unit	_	active	_	default	_
	runge		Omi		moment		deladit	
	Name	(Control	word of	Set		Access	RO
P08.77	Name	CAl	Nopen4	02 protocol	method	-	Access	KO
100.77	Domas		Unit		active		default	
	Range	-	Omi	-	moment	-	delault	-
	Name		ANGE	NDERR	Set	_	Access	RO
P08.78	Ivallic		ANSE	NDEKK	method	_	Access	KO
100.76	Range	_	Unit	_	active	_	default	_
	Range	_	Omi	_	moment	-	uciauit	_
	Name		FC AT F	DEBUG	Set	_	Access	RO
P08.79	Ivallic	-	LCAIL	LDUU	method	-	Access	KO
100.79	Range	_	Unit	_	active	_	default	
	Kange	_	Oint	_	moment	_	uciauit	_

10.10 P09 group parameters - advanced debugging parameters

P09.01	Name	Debug para	ameter 1		Set method	anytime	Access	RW
P09.01	Range	-32767~32767	Unit	-	active moment	Immediately	default	0
	N T	D 1			Set	,•		DIV
B00.02	Name	Debug para	imeter 2	2	method	anytime	Access	RW
P09.02	D	22777 22777	TT!4		active	I	1 14	0
	Range	-32767~32767	Unit	-	moment	Immediately	default	0
	NT	D.I	, ,	,	Set	,.		DW
B00.02	Name	Debug para	imeter 3	5	method	anytime	Access	RW
P09.03	D	22777 2277	TT '		active	I 1:.4.1	1 - 6 1	
	Range	-32767~32767	Unit	-	moment	Immediately	default	0

P09.04	Name	Debug para	ameter 4	ļ	Set method	anytime	Access	RW
P09.04	Range	-32767~32767 Unit -			active moment	Immediately	default	0
	Name	Debug parameter 5			Set method	anytime	Access	RW
P09.05	Range	-32767~32767 Unit -			active moment	Immediately	default	0
D00 06	Name	Debug parameter 6			Set method	anytime	Access	RW
P09.06	Range	-32767~32767 Unit -			active moment	Immediately	default	0
P09.07	Name	Debug para	ameter 7	7	Set method	anytime	Access	RW
P09.07	Range	-32767~32767	Unit	-	active moment	Immediately	default	0
D00 00	Name	Debug para	ameter 8	3	Set method	anytime	Access	RW
P09.08	Range	-32767~32767	Unit	-	active moment	Immediately	default	0

D 00.00	Name	Real ti	me spee	ed monitoring	Set method	-	Access	RO
P09.09	Range	-	Unit	rpm	active moment	-	default	-
		•	•					
	Name	UD	output 1	monitoring	Set method	-	Access	RO
P09.10	Range	-	Unit	-	active moment	-	default	-
		I						
	Name	UQ	output 1	monitoring	Set method	-	Access	RO
P09.11	Range	-	Unit	-	active moment	-	default	-
	Name	A Con	npares t	he value of A	Set method	-	Access	RO
P09.12	Range	-	Unit	-	active moment	-	default	-
				I.				
	Name	B com	pares th	e value of the	Set method	-	Access	RO
P09.13	Range	-	Unit	-	active moment	-	default	-
D00.44	Name	C com	pare the	e value of the	Set method	-	Access	RO
P09.14	Range	-	Unit	-	active moment	-	default	-
D00 16	Name		Z-Point	Count	Set method	-	Access	RO
P09.16	Range	-	Unit	-	active moment	-	default	-
				•		•		
D00 10	Name	Electr	ical ang	le value Q10	Set method	-	Access	RO
P09.19	Range	-	Unit	-	active moment	-	default	-

	Name	Sı	peed loo	op given	Set method	-	Access	RO
P09.20	Range	-	Unit	%0	active moment	-	default	-
				,				
D00 21	Name	Spe	ed loop	feedback	Set method	-	Access	RO
P09.21	Range	-	Unit	%0	active moment	-	default	-
P09.22	Name	Speed	loop fo	rward limiter	Set method	-	Access	RO
P09.22	Range	-	Unit	-	active moment	-	default	-
	Name	Speed	Speed loop reverse limiter			-	Access	RO
P09.23	Range	-	Unit	-	active moment	-	default	-
D00.24	Name	The output value of the speed loop			Set method	-	Access	RO
P09.24	Range	-	Unit	-	active moment	-	default	-
D00 25	Name	D-axi	s curren	nt loop given	Set method	-	Access	RO
P09.25	Range	-	Unit	%0	active moment	-	default	-
P09.26	Name	D-axis	current	loop feedback	Set method	-	Access	RO
FU9.20	Range	-	Unit	%	active moment	-	default	-
D00.27	Name	D-axis current loop positive limiting			Set method	-	Access	RO
P09.27	Range	- Unit -			active moment	-	default	-
P09.28	Name	D-axis	current	loop reverse	Set method	-	Access	RO

P09.29 Range - Unit - method - default Set	RO RO
P09.29 Name D-axis current loop output method - Access method - default P09.29 Range - Unit - Set method - default Name Q-axis current loop given	- RO
P09.29 Name D-axis current loop output method - Access Range - Unit - active moment - default P09.30 Name Q-axis current loop given Set method - Access Range - Unit % active - default P09.30 Range - Unit % active - default	- RO
P09.29 Name D-axis current loop output method - Access Range - Unit - active moment - default P09.30 Name Q-axis current loop given Set method - Access Range - Unit % active - default P09.30 Range - Unit % active - default	- RO
P09.29 Range - Unit - active moment - default P09.30 Name Q-axis current loop given method Range - Unit % active - default - Access method - default	RO
Range - Unit - default Pop.30 Name Q-axis current loop given Set method - Access	RO
P09.30 Name Q-axis current loop given — Access — Access — Range — Unit % active — default	
P09.30 Name Q-axis current loop given - Access Range - Unit % active - default	
P09.30 Range - Unit % active - default	
Range - Unit % active - default	-
	_
Name Q-axis current loop feedback Set - Access	RO
P09.31 method	
Range - Unit % active - default	-
moment	
Q-axis current loop positive Set	
Name limiting method - Access	RO
P09.32 active	
Range - Unit - default moment	-
Q-axis current loop reverse Set	D.O.
limiting method	RO
P09.33 Range - Unit - default	
Range - Unit - default moment	-
Name Q-axis current loop output Set - Access	RO
P09.34 method	
Range - Unit - active - default	_
moment	
Name original phase Set - Access method	RO
P09.39 active	
Range - Unit - active - default	-
monent	
Braking resistor PWM duty Set	
Name cvcle method - Access	RO
P09.41 active	
Range - Unit % moment - default	-

		D.C		•		α .			
	Name	Beto	-	kis curre	nt	Set	_	Access	RO
P09.45			filter	ing		method			
107.43	D		T T 14	%		active		1 - C14	
	Range	-	Unit	%	0	moment	-	default	-
		Hard	ware se	lf-test fa	m1t	Set			
	Name	Ilaiu			ıuıı		-	Access	RO
P09.47			cod	es		method			
	Range	_	Unit	_		active	_	default	_
	runge		Cint			moment		4014410	
	3.7	Start 1	Start time of current loop			Set			, no
	Name		cont	rol	_	method	-	Access	RO
P09.48						active			
	Range	-	Unit	-			-	default	-
						moment			
	Name	Start	Start time of speed loop			Set	_	Access	RO
P09.49	Tvaine		control			method		7100055	
F09. 4 9	D		TT-:4			active		1 C 1	
	Range	- Unit -			moment	-	default	-	
		Sin	Sine wave generator			Set			
	Name	Sin		_	/1	method	anytime	Access	RW
			ampli	lude		method	G 1 1 1		D . 1
P09.59							Speed Mod	le: Motor	Rated
	Range	_	-32767~	32767		Unit	Speed %		
	11		02,0,	52,0,			Torque mo	de: drive	rated
							current %		
	active		T 1			1 0 1		0	
	moment		Immed	iately		default		0	
		ı					1		
		Sin	e wave	generato	nr .	Set			
	Name	Sin		_	/1		anytime	Access	RW
P09.60			freque	ency		method			
	Range	-32767	~32767	Unit	_	active	Immediately	default	0
	1180	22,0,				moment		0010010	
) T	Bit	Bits that need to be			Set	<i>.</i> .		DII.
	Name	monitored			method	anytime	Access	RW	
P09.62						active			
	Range	0~65535 Unit -				Immediately	default	0	
						moment			
	I								
			1	C 41 1 1 1					
P09.63	Name	The	value o		to	Set method	_	Access	RO

				1				
	Range	-	Unit	-	active moment	-	default	-
		Nun	nber of	speed loop	Set			D. C.
	Name		interru	ptions	method	-	Access	RO
P09.75					active			
	Range	-	Unit	-	moment	-	default	-
					moment			
			1 C	, 1	G .			
	Name	Num		current loop	Set	-	Access	RO
P09.76			interru	ptions	method			
	Range	_	Unit	_	active	_	default	_
			Cint		moment		Goldan	
	N	G 1	1		Set			n.o
	Name	Speed	loop ex	ecution cycle	method	-	Access	RO
P09.85					active			
	Range	-	Unit	us	moment	-	default	-
					moment			
					Set			
	Name	Speed	loop ex	xecution time		-	Access	RO
P09.86				I	method			
	Range	_	Unit	us	active	_	default	_
					moment			
	Name	Current	+ 100m o	xecution cycle	Set		Access	RO
D00.07	Name	Current	100p C2	xecution cycle	method	-	Access	KO
P09.87	_				active			
	Range	-	Unit	us	moment	-	default	-
					Set			
	Name	Curren	t loop e	xecution time	method	-	Access	RO
P09.88					active			
	Range	-	Unit	us		-	default	-
					moment			
		I .						
	Name	Speed	referen	ce in position	Set	_	Access	RO
P09.89			mo	de	method			
1 07.07	Donco		Unit		active		default	
	Range	-	Unit	_	moment		uciauli	-
	N.T.	Posit	ion erro	r in position	Set			
	Name		mo	_	method	-	Access	RO
P09.90					active			
	Range	-	Unit	-		-	default	-
					moment			

	Name	Br		stor heat	Set	-	Access	RO
P09.91			percei	ntage	method			
	Range	_	Unit	%	active	_	default	_
	Range	_	Oiiit	70	moment	_	aciauit	
	2.7				Set			D.O.
	Name	lms t	ask exe	cution cycle	method	-	Access	RO
P09.93					active			
	Range	-	Unit	us	moment	-	default	-
					moment			
					Set			
	Name	UD f	eedforw	ard voltage		-	Access	RO
P09.94					method			
	Range	_	Unit	_	active	-	default	_
	8				moment			
	Name	IIO f	andform	ard voltage	Set		Access	RO
D00.05	Name	UQI	eedioiw	ard voltage	method	-	Access	KO
P09.95	D.		TT		active		1 6 1	
	Range	-	Unit	-	moment	-	default	-
		<u> </u>						
		A	bsolute	encoder	Set			
	Name			ation error	method	-	Access	RO
P09.96					active			
	Range	-	Unit	-		-	default	-
					moment			
			1 1 .	1	Q :			
	Name			encoder	Set	-	Access	RO
P09.98		com	municat	tion error 2	method			
	Range	_	Unit	_	active	_	default	_
	Runge		Cilit		moment		aciaait	

10.11 P10 group parameters - fault protection parameters

	Name	Overcurren	t Thresh	old	Set method	anytime	Access	RW		
P10.01	Range	0~800.0	Unit	%	active moment	Reset takes effect	default	400.0		
When th	When the detected current percentage P09 31 is greater than this value a software overcurrent									

When the detected current percentage P09.31 is greater than this value, a software overcurrent fault will be reported.

P10.02	Name	Overloa	nd value		Set method	anytime	Access	RW
P10.02	Range	0~3276.7 Unit %			active moment	Immediately	default	100.0
This valu	ae is recomm	ended to be set	to ——		current current			

	Name	Lock-rotor protection			Set	on time	Access	RW
D10.02	Name	current threshold			method	anytime	Access	KW
P10.03	Range	0~300.0	Unit	%	active moment	Immediately	default	100

When the drive current percentage P09.31 exceeds this value and lasts for the time of P10.04, and the speed is less than 5rpm, a fault will be reported. This value is recommended to use the shortcut button in the VECObserve software \rightarrow the default value after a full set of matching.

	Name	Lock-rotor p		time	Set	anytime	Access	RW
P10.04		thres	shold		method	-		
P10.04	Range	0~65535 Unit		ms	active	Immediately	default	800
	Range	0 -03333	Omi	1113	moment	immediatery	delauit	800

When the drive current percentage P09.31 exceeds P10.03, and lasts for the time of P10.04, and the speed is less than 5rpm, a fault will be reported. This value is recommended to use the shortcut button in the VECObserve software → the default value after a full set of matching.

P10.05	Name	Over speed	l percent	tage	Set method	anytime	Access	RW
F 10.03	Range	0~3276.7	Unit	%	active moment	Immediately	default	150.0

Speed percentage: The percentage of actual speed relative to rated speed. When the speed percentage is greater than the over-speed percentage, an over-speed fault is reported.

P10.06	Name Drive Overheat Threshold	Set method	anytime	Access	RW			
F 10.00	Range	0~3276.7	Unit	${\mathbb C}$	active moment	Immediately	default	80.0

P10.07	Name	Phase loss pro	tection s	settings	Set method	anytime	Access	RW
F10.07	Range	0~32767	Unit		active moment	Immediately	default	0

When the 0th bit is 1, the output phase loss protection is enabled; when the 1st bit is 1, the input phase loss protection is enabled.

P10.00	N	ame	Return to	origin t	ime-ou	t	Set method	anytime	Access	RW
P10.08	R	ange	0~32767	Un	it s		active moment	Immediately	default	0
P10.09	N	ame	Motor end memory f	-	when		Set method	anytime	Access	RW
	Ra	ange	0~1	Unit	-		active moment	Immediately	default	0
		S	Setting	ting Power-off mot			or encoder p	oosition memory		
			0					encoder is not ver is turned off		
			1					encoder position		
				1 1 OWEI-OH HICH				1		
P10.10	Na	ame	AI zero	AI zero drift threshold				anytime	Access	RW
P10.10	Ra	ange	0~32767	0~32767 Unit mV			active moment	Immediately	default	500
										Г
P10.11	N	ame	Overload	curve se	election		Set method	anytime	Access	RW
110111	Ra	ange	0~4	Uni	t -		active moment	Immediately	default	0
P10.12	Na	ame	Zero spe automatical lim		es torqu	ıe	Set method	anytime	Access	RW
	Ra	ange	0~3276.7	Uni	t %)	active moment	Immediately	default	0
P10.13	N	ame		Custom 1.1 times overload curve time			Set method	anytime	Access	RW
F10.13	Ra	ange	0~3276.7	3276.7 Unit s			active moment	Immediately	default	0
									•	
P10.14	N	ame		5 times overload arve time		Set method	anytime	Access	RW	
110.14	Ra	ange	0~3276.7	Uni	t s		active moment	Immediately	default	0

			G			~ .					
	Nan	ne	Custom 2.0 ti		erload	Set	anytime	Access	RW		
P10.15			curve time method active Immediately default								
	Rang	ge	0~3276.7	Unit	s		Immediately	default	0		
						moment					
			Custom 2.5 ti		له م د اسم	Set					
	Nan	ne		imes ove e time	erioad	method	anytime	Access	RW		
P10.16			Cui ve	tillie		active					
	Rang	ge	0~3276.7	Unit	s	moment	Immediately	default	0		
						moment					
			Custom 3.0 ti	imes ove	erload	Set					
	Nan	ne		e time		method	anytime	Access	RW		
P10.17	Rang	ge	0~3276.7	Unit	s	active	Immediately	default	0		
	•					moment					
	N T		C 1		1	Set		A	DW		
P10.18	Nan	ie	Speed moni	itoring v	aiue	method	anytime	Access	RW		
P10.18	Don	~~	0~32767 Unit - active Immediately default								
	Rang	36	0~32707	Omi	_	moment	Illinediately	delault	0		
	Nan	ne	current fault code Set - Access RO								
P10.20						method					
	Ran	ge	0~32767	Unit	-	active	-	default	_		
0 1						moment					
fault c		g 6			Fa	ult description	on				
Er.10			ware overcurrent								
Er.10			ware overcurrent								
Er.10			rvoltage								
Er.104			ervoltage	1,							
Er.104 or			current sensor is fa	-	1	4 4 - 4 1 - 1	- C14:4-1				
Er.105 or Er.106 or					der is no	t connected, the	e fault is reported.				
Er.106 or Er.10			EEPROM verify f		ne nhasa	obtained the	ugh the HAII o	witch and th	e nhase		
121.10	<i>3</i>		hase sampling fault, when the phase obtained through the HALL switch and the phase btained through the encoder are too different, this fault is reported.								
Er.108 or	Er 008		n the FPGA and A				ль теропии.				
Er.10			e current changes		aiiicati	on are raurry					
Er.1			netic encoder failu								
Er.1			ent phase sequenc		g failure						
Er.1			output is out of ph								
Er.1			not scan to Z poin		elf-learn	ing					
Er.1			int offset not foun								
Er.1		_									
		1	ll code value learning error								

En.17 The drive is overheated En.118 When powered on, the wire-saving encoder does not feedback hall value En.119 Motor encoder type does not match En.120 Software is not authorized En.121 Phase loss at RST input En.122 There is a speed when the provincial encoder starts En.130 STO (INFn75) alarm input signal is valid En.131 There is speed when the provincial encoder starts En.132 ARM does not match FPGA En.133 or En.033 The Profinet protocol chip cannot communicate with the ARM motor control chip Fn.200 When returns to home, the home signal INfn.34 is not assigned. En.201 INFn.xx repeated allocation, one input function bit is assigned to two or more DI En.202 Overspeed En.203 The position error is too large En.204 Unassigned interrupt fixed length trigger signal INFn.40 En.205 No return to home before absolute point motion En.206 Motor overload En.207 Software limit En.209 Curve planming failed En.210 Excessive tension En.211 Breakage failure En.212 Xy pulse type selection error in tension control mode En.213 Fully closed loop position error is too large En.214 Prohibit positive (reverse) turn En.215 Z point signal is unstable En.217 RPDO receive timeout En.218 Reserved En.219 Motor stall En.220 The reverse stroke switch input function bit INFn.43 is not assigned to entity DI En.222 The reverse stroke switch input function bit INFn.44 is not assigned to entity DI En.223 Search home error En.224 CAN bus state switching error En.225 Unsupported CANopen control mode En.226 Absolute value mode lap overflow En.227 The battery of the absolute encoder is faulty En.228 Inertia learning failed, need to reset PO7.03 and PO7.04 En.229 When learning failed, need to reset PO7.03 and PO7.04	Er.116	Great change in rotational speed
Er.118 When powered on, the wire-saving encoder does not feedback hall value Fr.119 Motor encoder type does not match Er.120 Software is not authorized Fr.121 Phase loss at RST input Er.122 or Er.022 Use timeout Er.130 STO (INFn75) alarm input signal is valid Er.131 There is speed when the provincial encoder starts Er.132 ARM does not match FPGA Er.133 or Er.033 The Profinet protocol chip cannot communicate with the ARM motor control chip Fr.200 When returns to home, the home signal INFn.34 is not assigned. Er.201 INFn.xx repeated allocation, one input function bit is assigned to two or more DI Fr.202 Overspeed Er.203 The position error is too large Fr.204 Unassigned interrupt fixed length trigger signal INFn.40 Er.205 No return to home before absolute point motion Fr.206 Motor overload Er.207 Software limit Er.208 hardware limit Er.209 Curve planning failed Er.210 Excessive tension Er.211 Breakage failure Fr.212 XY pulse type selection error in tension control mode Er.213 Fully closed loop position error is too large Er.214 Prohibit positive (reverse) turn Er.215 RPD receive timeout Er.216 Z point signal is unstable Er.217 RPDO receive timeout Er.218 Reserved Fr.219 Motor stall Er.220 The reverse stroke switch input function bit INFn.43 is not assigned to the entity DI Er.223 Search home error Er.224 CAN bus stats switching error Fr.225 Unsupported CAN open control mode Er.227 The battery of the absolute encoder is faulty Er.228 Inertia Learning failed, need to reser P07.03 and P07.04	-	
Er.120 Motor encoder type does not match Er.121 Phase loss at RST input Er.122 or Er.022 Use timeout Er.130 STO (INFn75) alarm input signal is valid Er.131 There is speed when the provincial encoder starts Er.132 ARM does not match FPGA Er.133 or Er.033 The Profinet protocol chip cannot communicate with the ARM motor control chip Er.200 When returns to home, the home signal INFn.34 is not assigned. Er.201 INFn.xx repeated allocation, one input function bit is assigned to two or more DI Er.202 Overspeed Er.203 The position error is too large Er.204 Unassigned interrupt fixed length trigger signal INFn.40 Er.205 No return to home before absolute point motion Er.206 Motor overload Er.207 Software limit Er.208 hardware limit Er.209 Curve planning failed Er.211 Breakage failure Er.212 XY pulse type selection error is too large Er.214 Prohibit positive (reverse) turn Er.215 RPD receive timeout Er.216 RPD receive timeout Er.217 RPD receive timeout Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.44 is not assigned to the entity DI Er.222 The reverse stroke switch input function bit INFn.44 is not assigned to entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.227 The battery of the absolute encoder is faulty Er.228 Inertia Learning failed, need to reset P07.03 and P07.04		
Er.120 Software is not authorized Er.121 Phase loss at RST input Er.122 or Er.022 Use timeout Er.130 STO (INFn75) alarm input signal is valid Er.131 There is speed when the provincial encoder starts Er.132 ARM does not match FPGA Er.133 or Er.033 The Profinet protocol chip cannot communicate with the ARM motor control chip Er.200 When returns to home, the home signal INFn 34 is not assigned. Er.201 INFn.xx repeated allocation, one input function bit is assigned to two or more DI Er.202 Overspeed Er.203 The position error is too large Er.204 Unassigned interrupt fixed length trigger signal INFn.40 Er.205 No return to home before absolute point motion Er.206 Motor overload Er.207 Software limit Er.208 hardware limit Er.209 Curve planning failed Er.210 Excessive tension Er.211 Breakage failure Er.212 XY pulse type selection error in tension control mode Er.213 Fully closed loop position error is too large Er.214 Prohibit positive (reverse) turn Er.215 Reserved Er.216 Braking resistor overload Er.217 RPDO receive timeout Er.218 Reserved Er.219 Motor stall Er.220 The reverse stroke switch input function bit INFn.43 is not assigned to the entity DI Er.222 CAN bus state switching error Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.227 The battery of the absolute encoder is faulty Er.228 Inertia Learning failed, need to reset P07.03 and P07.04		
Er.121 Phase loss at RST input Er.122 or Er.022 Use timeout Er.130 STO (INFn75) alarm input signal is valid Er.131 There is speed when the provincial encoder starts Er.132 ARM does not match FPGA Er.133 or Er.033 The Profinet protocol chip cannot communicate with the ARM motor control chip Er.200 When returns to home, the home signal INFn.34 is not assigned. Er.201 INFn.xx repeated allocation, one input function bit is assigned to two or more DI Er.202 Overspeed Er.203 The position error is too large Er.204 Unassigned interrupt fixed length trigger signal INFn.40 Er.205 No return to home before absolute point motion Er.206 Motor overload Er.207 Software limit Er.208 hardware limit Er.209 Curve planning failed Er.210 Excessive tension Er.211 Breakage failure Er.212 XY pulse type selection error in tension control mode Er.213 Fully closed loop position error is too large Er.214 Prohibit positive (reverse) turn Er.216 Z point signal is unstable Er.217 RPDO receive timeout Er.218 Reserved Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Fr.222 CAN bus state switching error Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset PO7.03 and PO7.04		
Er.122 or Er.022 Use timeout Er.130 STO (INFn75) alarm input signal is valid Er.131 There is speed when the provincial encoder starts Er.132 ARM does not match FPGA Er.133 or Er.033 The Profinet protocol chip cannot communicate with the ARM motor control chip Fr.200 When returns to home, the home signal INFn.34 is not assigned. Er.201 INFn.xx repeated allocation, one input function bit is assigned to two or more DI Er.202 Overspeed Er.203 The position error is too large Er.204 Unassigned interrupt fixed length trigger signal INFn.40 Er.205 No return to home before absolute point motion Er.206 Motor overload Er.207 Software limit Er.208 hardware limit Er.209 Curve planning failed Er.210 Excessive tension Er.211 Breakage failure Er.212 XY pulse type selection error in tension control mode Er.213 Fully closed loop position error is too large Er.214 Prohibit positive (reverse) turn Er.216 Z point signal is unstable Er.217 RPDO receive timeout Er.218 Reserved Er.219 Motor stall Er.220 The reverse stroke switch input function bit INFn.43 is not assigned to the entity DI Er.222 The reverse stroke switch input function bit INFn.43 is not assigned to entity DI Er.222 The reverse stroke switch input function bit INFn.43 is not assigned to entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset PO7.03 and PO7.04		
Er.130 STO (INFn75) alarm input signal is valid Er.131 There is speed when the provincial encoder starts Er.132 ARM does not match FPGA Er.133 or Er.033 The Profinet protocol chip cannot communicate with the ARM motor control chip Er.200 When returns to home, the home signal INFn.34 is not assigned. Er.201 INFn.xx repeated allocation, one input function bit is assigned to two or more DI Er.202 Overspeed Er.203 The position error is too large Er.204 Unassigned interrupt fixed length trigger signal INFn.40 Er.205 No return to home before absolute point motion Er.206 Motor overload Er.207 Software limit Er.208 hardware limit Er.209 Curve planning failed Er.210 Excessive tension Er.211 Breakage failure Er.212 XY pulse type selection error in tension control mode Er.213 Fully closed loop position error is too large Er.214 Prohibit positive (reverse) turn Er.215 Reserved Er.216 Reserved Er.217 RPDO receive timeout Er.218 Reserved Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.222 The reverse stroke switch input function bit INFn.44 is not assigned to entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset PO7.03 and PO7.04		
Er.131 There is speed when the provincial encoder starts Er.132 ARM does not match FPGA Er.133 or Er.033 The Profinet protocol chip cannot communicate with the ARM motor control chip Er.200 When returns to home, the home signal INFn.34 is not assigned. Er.201 INFn.xx repeated allocation, one input function bit is assigned to two or more DI Er.202 Overspeed Er.203 The position error is too large Er.204 Unassigned interrupt fixed length trigger signal INFn.40 Er.205 No return to home before absolute point motion Er.206 Motor overload Er.207 Software limit Er.209 Curve planning failed Er.210 Excessive tension Er.211 Breakage failure Er.212 XY pulse type selection error in tension control mode Er.213 Fully closed loop position error is too large Er.214 Prohibit positive (reverse) turn Er.215 Reserved Er.217 RPDO receive timeout Er.218 Reserved Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.222 The reverse stroke switch input function bit INFn.44 is not assigned to the entity DI Er.223 Scarch home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.122 or Er.022	
Er.132 ARM does not match FPGA Er.133 or Er.033 The Profinet protocol chip cannot communicate with the ARM motor control chip Er.200 When returns to home, the home signal INFn.34 is not assigned. Er.201 INFn.xx repeated allocation, one input function bit is assigned to two or more DI Er.202 Overspeed Er.203 The position error is too large Er.204 Unassigned interrupt fixed length trigger signal INFn.40 Er.205 No return to home before absolute point motion Er.206 Motor overload Er.207 Software limit Er.208 hardware limit Er.209 Curve planning failed Er.210 Excessive tension Er.211 Breakage failure Er.212 XY pulse type selection error in tension control mode Er.213 Fully closed loop position error is too large Er.214 Prohibit positive (reverse) turn Er.215 RPDO receive timeout Er.217 RPDO receive timeout Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.130	
Er.133 or Er.033 The Profinet protocol chip cannot communicate with the ARM motor control chip Er.200 When returns to home, the home signal INFn.34 is not assigned. Er.201 INFn.xx repeated allocation, one input function bit is assigned to two or more DI Er.202 Overspeed Er.203 The position error is too large Er.204 Unassigned interrupt fixed length trigger signal INFn.40 Er.205 No return to home before absolute point motion Er.206 Motor overload Er.207 Software limit Er.208 hardware limit Er.209 Curve planning failed Er.210 Excessive tension Er.211 Breakage failure Er.212 XY pulse type selection error in tension control mode Er.213 Fully closed loop position error is too large Er.214 Prohibit positive (reverse) turn Er.216 Z point signal is unstable Er.217 RPDO receive timeout Er.218 Reserved Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.131	
Er.200 When returns to home, the home signal INFn.34 is not assigned. Er.201 INFn.xx repeated allocation, one input function bit is assigned to two or more DI Er.202 Overspeed Er.203 The position error is too large Er.204 Unassigned interrupt fixed length trigger signal INFn.40 Er.205 No return to home before absolute point motion Er.206 Motor overload Er.207 Software limit Er.208 hardware limit Er.209 Curve planning failed Er.210 Excessive tension Er.211 Breakage failure Er.212 XY pulse type selection error in tension control mode Er.213 Fully closed loop position error is too large Er.214 Prohibit positive (reverse) turn Er.216 Z point signal is unstable Er.217 RPDO receive timeout Er.218 Reserved Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.132	ARM does not match FPGA
Er.201 INFn.xx repeated allocation, one input function bit is assigned to two or more DI Er.202 Overspeed Er.203 The position error is too large Er.204 Unassigned interrupt fixed length trigger signal INFn.40 Er.205 No return to home before absolute point motion Er.206 Motor overload Er.207 Software limit Er.208 hardware limit Er.209 Curve planning failed Er.210 Excessive tension Er.211 Breakage failure Er.212 XY pulse type selection error in tension control mode Er.213 Fully closed loop position error is too large Er.214 Prohibit positive (reverse) turn Er.216 Z point signal is unstable Er.217 RPDO receive timeout Er.218 Reserved Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.133 or Er.033	The Profinet protocol chip cannot communicate with the ARM motor control chip
Er.202 Overspeed Er.203 The position error is too large Er.204 Unassigned interrupt fixed length trigger signal INFn.40 Er.205 No return to home before absolute point motion Er.206 Motor overload Er.207 Software limit Er.208 hardware limit Er.209 Curve planning failed Er.210 Excessive tension Er.211 Breakage failure Er.212 XY pulse type selection error in tension control mode Er.213 Fully closed loop position error is too large Er.214 Prohibit positive (reverse) turn Er.216 Z point signal is unstable Er.217 RPDO receive timeout Er.218 Reserved Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.222 The reverse stroke switch input function bit INFn.44 is not assigned to entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.200	When returns to home, the home signal INFn.34 is not assigned.
Er.203 The position error is too large Er.204 Unassigned interrupt fixed length trigger signal INFn.40 Er.205 No return to home before absolute point motion Er.206 Motor overload Er.207 Software limit Er.208 hardware limit Er.209 Curve planning failed Er.210 Excessive tension Er.211 Breakage failure Er.212 XY pulse type selection error in tension control mode Er.213 Fully closed loop position error is too large Er.214 Prohibit positive (reverse) turn Er.216 Z point signal is unstable Er.217 RPDO receive timeout Er.218 Reserved Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.226 Absolute value mode lap overflow Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.201	INFn.xx repeated allocation, one input function bit is assigned to two or more DI
Er.204 Unassigned interrupt fixed length trigger signal INFn.40 Er.205 No return to home before absolute point motion Er.206 Motor overload Er.207 Software limit Er.208 hardware limit Er.209 Curve planning failed Er.210 Excessive tension Er.211 Breakage failure Er.212 XY pulse type selection error in tension control mode Er.213 Fully closed loop position error is too large Er.214 Prohibit positive (reverse) turn Er.216 Z point signal is unstable Er.217 RPDO receive timeout Er.218 Reserved Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.222 CAN bus state switching error Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset PO7.03 and PO7.04	Er.202	Overspeed
Er.205 No return to home before absolute point motion Er.206 Motor overload Er.207 Software limit Er.208 hardware limit Er.209 Curve planning failed Er.210 Excessive tension Er.211 Breakage failure Er.212 XY pulse type selection error in tension control mode Er.213 Fully closed loop position error is too large Er.214 Prohibit positive (reverse) turn Er.216 Z point signal is unstable Er.217 RPDO receive timeout Er.218 Reserved Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.222 The reverse stroke switch input function bit INFn.44 is not assigned to entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.226 Absolute value mode lap overflow Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset PO7.03 and PO7.04	Er.203	The position error is too large
Er.207 Software limit Er.208 hardware limit Er.209 Curve planning failed Er.210 Excessive tension Er.211 Breakage failure Er.212 XY pulse type selection error in tension control mode Er.213 Fully closed loop position error is too large Er.214 Prohibit positive (reverse) turn Er.216 Z point signal is unstable Er.217 RPDO receive timeout Er.218 Reserved Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.222 The reverse stroke switch input function bit INFn.44 is not assigned to entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.204	Unassigned interrupt fixed length trigger signal INFn.40
Er.207 Software limit Er.208 hardware limit Er.209 Curve planning failed Er.210 Excessive tension Er.211 Breakage failure Er.212 XY pulse type selection error in tension control mode Er.213 Fully closed loop position error is too large Er.214 Prohibit positive (reverse) turn Er.216 Z point signal is unstable Er.217 RPDO receive timeout Er.218 Reserved Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.222 The reverse stroke switch input function bit INFn.44 is not assigned to entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.226 Absolute value mode lap overflow Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset PO7.03 and PO7.04	Er.205	No return to home before absolute point motion
Er.208 hardware limit Er.209 Curve planning failed Er.210 Excessive tension Er.211 Breakage failure Er.212 XY pulse type selection error in tension control mode Er.213 Fully closed loop position error is too large Er.214 Prohibit positive (reverse) turn Er.216 Z point signal is unstable Er.217 RPDO receive timeout Er.218 Reserved Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.222 The reverse stroke switch input function bit INFn.44 is not assigned to entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.226 Absolute value mode lap overflow Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset PO7.03 and PO7.04	Er.206	Motor overload
Er.209 Curve planning failed Er.210 Excessive tension Er.211 Breakage failure Er.212 XY pulse type selection error in tension control mode Er.213 Fully closed loop position error is too large Er.214 Prohibit positive (reverse) turn Er.216 Z point signal is unstable Er.217 RPDO receive timeout Er.218 Reserved Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.222 The reverse stroke switch input function bit INFn.44 is not assigned to entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.226 Absolute value mode lap overflow Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.207	Software limit
Er.210 Excessive tension Er.211 Breakage failure Er.212 XY pulse type selection error in tension control mode Er.213 Fully closed loop position error is too large Er.214 Prohibit positive (reverse) turn Er.216 Z point signal is unstable Er.217 RPDO receive timeout Er.218 Reserved Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.222 The reverse stroke switch input function bit INFn.44 is not assigned to entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.226 Absolute value mode lap overflow Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.208	hardware limit
Er.211 Breakage failure Er.212 XY pulse type selection error in tension control mode Er.213 Fully closed loop position error is too large Er.214 Prohibit positive (reverse) turn Er.216 Z point signal is unstable Er.217 RPDO receive timeout Er.218 Reserved Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.222 The reverse stroke switch input function bit INFn.44 is not assigned to entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.226 Absolute value mode lap overflow Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.209	Curve planning failed
Er.212 XY pulse type selection error in tension control mode Er.213 Fully closed loop position error is too large Er.214 Prohibit positive (reverse) turn Er.216 Z point signal is unstable Er.217 RPDO receive timeout Er.218 Reserved Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.222 The reverse stroke switch input function bit INFn.44 is not assigned to entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.226 Absolute value mode lap overflow Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.210	Excessive tension
Er.213 Fully closed loop position error is too large Er.214 Prohibit positive (reverse) turn Er.216 Z point signal is unstable Er.217 RPDO receive timeout Er.218 Reserved Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.222 The reverse stroke switch input function bit INFn.44 is not assigned to entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.226 Absolute value mode lap overflow Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.211	Breakage failure
Er.214 Prohibit positive (reverse) turn Er.216 Z point signal is unstable Er.217 RPDO receive timeout Er.218 Reserved Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.222 The reverse stroke switch input function bit INFn.44 is not assigned to entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.226 Absolute value mode lap overflow Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.212	XY pulse type selection error in tension control mode
Er.216 Z point signal is unstable Er.217 RPDO receive timeout Er.218 Reserved Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.222 The reverse stroke switch input function bit INFn.44 is not assigned to entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.226 Absolute value mode lap overflow Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.213	Fully closed loop position error is too large
Er.217 RPDO receive timeout Er.218 Reserved Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.222 The reverse stroke switch input function bit INFn.44 is not assigned to entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.226 Absolute value mode lap overflow Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.214	Prohibit positive (reverse) turn
Er.218 Reserved Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.222 The reverse stroke switch input function bit INFn.44 is not assigned to entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.226 Absolute value mode lap overflow Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.216	Z point signal is unstable
Er.219 Motor stall Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.222 The reverse stroke switch input function bit INFn.44 is not assigned to entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.226 Absolute value mode lap overflow Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.217	RPDO receive timeout
Er.220 Braking resistor overload Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.222 The reverse stroke switch input function bit INFn.44 is not assigned to entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.226 Absolute value mode lap overflow Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.218	Reserved
Er.221 The forward stroke switch input function bit INFn.43 is not assigned to the entity DI Er.222 The reverse stroke switch input function bit INFn.44 is not assigned to entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.226 Absolute value mode lap overflow Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.219	Motor stall
Er.222 The reverse stroke switch input function bit INFn.44 is not assigned to entity DI Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.226 Absolute value mode lap overflow Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.220	Braking resistor overload
Er.223 Search home error Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.226 Absolute value mode lap overflow Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.221	The forward stroke switch input function bit INFn.43 is not assigned to the entity DI
Er.224 CAN bus state switching error Er.225 Unsupported CANopen control mode Er.226 Absolute value mode lap overflow Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.222	The reverse stroke switch input function bit INFn.44 is not assigned to entity DI
Er.225 Unsupported CANopen control mode Er.226 Absolute value mode lap overflow Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.223	Search home error
Er.226 Absolute value mode lap overflow Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.224	CAN bus state switching error
Er.227 The battery of the absolute encoder is faulty Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.225	Unsupported CANopen control mode
Er.228 Inertia learning failed, need to reset P07.03 and P07.04	Er.226	Absolute value mode lap overflow
	Er.227	The battery of the absolute encoder is faulty
Er.229 When learning fully closed loop parameters	Er.228	Inertia learning failed, need to reset P07.03 and P07.04
	Er.229	When learning fully closed loop parameters
Er.230 reserve	Er.230	reserve

Er.231	Bus error
Er.232	Second encoder battery failure
Er.234	continuous vibration
Er.237	car breakdown
Er.238	Linear motor phase finding failed
Er.239	Linear motor phase finding failed, stuck in forward direction
Er.240	Linear motor phase finding failed, stuck in reverse direction
Er.241	Over-travel error during self-learning
Er.242	Encoder learning error, encoder interference or wrong magnetic pole setting
Er.243	Linear motor phase finding failure (disconnection)
Er.244	Linear motor phase finding failure (large position error)
Er.245	Linear motor phase finding failure (current pulse width is too small)
Er.600	Motor overheating
Er.601	DI function code is not assigned
Er.602	AI zero drift is too large
Er.603	The zero return time out, when the zero return time is greater than P10.08, this fault will be
	reported.
Er.604	When the absolute encoder is self-learning
Er.605	The battery voltage of the absolute encoder is too low
Er.606	The battery voltage of the second encoder is too low
Er.607	Inertia learning failed, need to increase P07.33 and then learn
Er.608	U disk read and write failed
Er.609	Drive parameters not found during factory reset
Er.610	Motor parameters not found when restoring to factory defaults
Er.611	EEPROM verification error when restoring to factory defaults
Er.612	Self-learning current loop error
Er.613	Phase finding not yet completed
Er.701	EtherCAT bus error
Er.702	EtherCAT bus dropped
Er.703	After the back clearance compensation is increased, two steps are required before returning to
	zero to eliminate the back clearance

P10.21	Name	Selected fault	Selected fault code count		Set method	anytime	Access	RW	
P10.21	Range	1~5	Unit	-	active moment	Immediately	default	5	

D10 22	Name	Selected trou	ıble cod	e	Set method	-	Access	RO
P10.22	Range	0~32767	Unit	-	active moment	-	default	-

P10.23	Name	Selected failure	point in	time		et thod		-	Access	RO
F10.23	Range	0~32767	Unit	min		tive ment		-	default	-
		I								
P10.24	Name	Motor speed at	selected	fault		Set ethod		-	Access	RO
F10.24	Range	-32767~32767	-32767~32767 Unit rpm m					-	default	-
							•			
D10.25	Name	RMS value of motor current at selected fault				Set metho		-	Access	RO
P10.25	Range	0~3276.7 Unit A				activ		-	default	-
D10.26	Name	Motor V-phase current at selected fault				Set metho		-	Access	RO
P10.26	Range	-3276.7~3276.7 Unit A				activ mome		-	default	-
							'			
	Name	Motor W-ph	Motor W-phase current at				,		Access	RO
P10.27	Name	selecte	ed fault			meth	od	-	Access	KO
110.27	Range	-3276.7~3276.7	Unit	A		activ mome		-	default	-
D10 20	Name	Bus voltage a	t selecte	ed fault		Set metho		-	Access	RO
P10.28	Range	0~32767	Unit	V		activ mome		-	default	-
D10.20	Name	Electric drive	tempera	ature at		Set metho		-	Access	RO
P10.29	Range	0~3276.7					ent	-	default	-
									1	
	Name	Entity DI state at the time of the selected failure				Set meth		-	Access	RO
P10.30	Range	-		activ		-	default	-		
										I
P10.31	Name	Entity DO state	at the ti	me of t	he	Set metho		-	Access	RO

	Range	- Unit -		active moment	-	default	-	
	Name	Hardware fault cumulative count			Set		Access	RO
P10.32	Name	va		method		Access	RO	
F10.32	Range	0~32767 Unit -			active		default	
	Kange	0~32707	-	moment	•	uciauit	-	

D10.22	Name fault shield		Set method	anytime	Access	RW		
P10.33	Range	0~65535	Unit	-	active moment	Immediately	default	12

Displayed in decimal format, after conversion to binary format, the 0th digit shields the overload, the 1st digit shields the overcurrent, the 2nd digit shields the phase fault, the 3rd digit shields the large current change fault, the 4th digit shields the hardware overcurrent major fault, The 5th bit shields the large speed change fault, the 6th bit shields the Z point instability, the 7th bit shields the SYNC loss, and the 8th bit shields the current sensor fault. Bit 9 masks undervoltage faults. The 10th bit shields the encoder fault, the 12th bit shields the stall fault

P10.34	Name	Hardware failure time threshold			Set method	anytime	Access	RW		
P10.34	Range 0~32767 Unit 20ns		active moment	Immediately	default	250				
After the	After the IGBT fault exceeds this time, the fault will be reported									

	Name	Fault minimu			Set	anytime	Access	RW
P10.35		respond to	reset fa	ults	method	,		
110.55	Dange	0~32767	Unit	s	active	Immediately	default	60
	Range	0°32707		moment	miniediately	deraun	00	
			2 11 2					
	Name	Speed loop reference at last			Set		Access	RO
D10 44	Name	valid fault		method	-	Access	RO	
P10.44	Danga		T Ii4	%	active		default	
	Range	-	Unit	70	moment	-	default	-
	Nome	Speed loop for	eedback	at last	Set		Access	D.O.
D10.45	Name	valid	l fault		method	-	Access	RO
P10.45	Damas		T Ii4	0/	active		d a famile	
	Range	- Unit %		moment	-	default	-	
D10.46	N	Torque reference at the last			Set			D.O.
P10.46	P10.46 Name valid fault		mathad	-	Access	RO		

method

valid fault

	Range	-	Unit	%	active moment	-	default	-
	Name	Torque feedb	ack at tl	ne last	Set method	-	Access	RO
P10.47	Range	- vanc	Unit	%	active	_	default	_
	11411190		Cint	, ,	moment		Geragi	
	Name	Filtered posit	ion erro	r at the	Set		Access	RO
D10.49	Name	last va	lid fault		method	-	Access	KO
P10.48	Range	_	- Unit -		active	_	default	_
	e e				moment			
						r		l
	Name	Index of cu	irrent re	cord	Set	_	Access	RO
P10.49	Tvaine	mack of ce		- Coru	method		7100035	Ro
110.15	Range	_	Unit	_	active	_	default	_
	Runge				moment		deraut	
	Nomo	The fault co	de of the	fault	Set		A 00000	RO
D10.50	Name with index 0			method	-	Access	RO	
P10.50	D		T I '4		active		1 - 6 14	
	Range	-	Unit	-	moment	-	default	-
	3 .T	failure time f	or failur	e with	Set			D.O.
D10.51	Name	ind	ex 0		method	-	Access	RO
P10.51	T.		TT **		active		1.0.1	
	Range	-	Unit	S	moment	-	default	-
		Rotation spee	ed of fau	lt with	Set			T 0
	Name	1	ex 0		method	-	Access	RO
P10.52	_				active			
	Range	-	Unit	rpm	moment	-	default	-
		I		l .		1		I
		The rms value	e of the	current	Set			
	Name	for the fault			method	-	Access	RO
P10.53				active				
	Range	- Unit A		moment	-	default	-	
					1		1	
		Instantaneous value of the						
	Name	Instantaneous value of the V-phase current for the fault			Set	_	Access	RO
P10.54		with index 0			method			
	Range	-	Unit	A	active	-	default	-
	<i>S</i> -	<u> </u>				L		

					monsert			
					moment			
P10.55	Name	Instantaneou W-phase curre			Set method	-	Access	RO
	Range	- Unit A		active moment	-	default	-	
D10.56	Name	_	Capacitor voltage for the fault with index 0			-	Access	RO
P10.56	Range	-	Unit	V	active moment	-	default	-
	Name	temperature of fault with			Set		Access	RO
P10.57	Range	-	Unit	$^{\circ}$	active moment	-	default	-
D10.50	Name	The DI status of the fault with index 0			Set method	-	Access	RO
P10.58	Range	-	Unit	-	active moment	-	default	-
		l				l		ı
	Name	DO status of f	ault witl	h index	Set method	-	Access	RO
P10.59	Range	-	Unit	-	active moment	-	default	-
								l
	Name	The fault co	de of the	fault	Set method	-	Access	RO
P10.60	Range	-	Unit	-	active moment	-	default	-
		I		I		I		I
	Name	failure time f	or failur	e with	Set method	-	Access	RO
P10.61	Range	-	Unit	s	active moment	-	default	-
		1		I		1		I
Dia ca	Name	The speed of ind	the faulex 1	t with	Set method	-	Access	RO
P10.62	Range	-	Unit	rpm	active moment	-	default	-

	Name	The rms value for the fault			Set method	-	Access	RO
P10.63	Range	-	Unit	A	active moment	-	default	-
P10.64	Name	Instantaneou V-phase curre with i			Set method	-	Access	RO
	Range	- Unit A		active moment	-	default	-	
P10.65	Name	Instantaneous value of the W-phase current for the fault with index 1			Set method	-	Access	RO
	Range	-	Unit	A	active moment	-	default	-
D10.66	Name	Capacitor voltage for the fault with index 1			Set method	-	Access	RO
P10.66	Range	-	- Unit V		active moment	-	default	-
				•				
	Name	temperature ind	of fault ex 1	with	Set method	-	Access	RO
P10.67	Range	-	Unit	$^{\circ}$	active moment	-	default	-
Dia ca	Name	The DI statu with i	s of the	fault	Set method	-	Access	RO
P10.68	Range	-	Unit	-	active moment	-	default	-
		•				•		
D10.60	Name	DO status of f	ault witl	h index	Set method	-	Access	RO
P10.69	Range	- Unit -		active moment	-	default	-	
B10 ==	Name	The fault code ind	e for fau ex 2	lt with	Set method	-	Access	RO
P10.70	Range	-	Unit	-	active moment	-	default	-

	Name	Failure time	of failur ex 2	e with	Set method	-	Access	RO
P10.71	Range	-	Unit	s	active moment	-	default	-
	Name	Rotation spe	ed of the	e fault	Set method	-	Access	RO
P10.72	Range	- Unit rpm		active	-	default	-	
				Шошен				
	Name	The rms value of the current for the fault with index 2			Set method	-	Access	RO
P10.73	Range	-	Unit	A	active moment	-	default	-
		1						
P10.74	Name	V-phase curre	Instantaneous value of the V-phase current for the fault with index 2		Set method	-	Access	RO
	Range	- Unit A		active moment	-	default	-	
						<u> </u>		
P10.75	Name	W-phase current instantaneous value for fault with index 2			Set method	-	Access	RO
	Range	-	Unit	A	active moment	-	default	-
D10.76	Name	Capacitor vo with i	oltage for ndex 2	r fault	Set method	-	Access	RO
P10.76	Range	-	Unit	V	active moment	-	default	-
D10 77	Name	temperature ind	of fault ex 2	with	Set method	-	Access	RO
P10.77	Range	- Unit °C		active moment	-	default	-	
D10.70	Name	DI state of t ind	the fault ex 2	with	Set method	-	Access	RO
P10.78	Range	-	Unit	-	active moment	-	default	-

	Name	DO status of f	ault with	h index	Set method	-	Access	RO
P10.79	Range	-	Unit	-	active moment	-	default	-
		The fault cod	e for fau	ılt with	Set			
	Name			iit witti	method	-	Access	RO
P10.80		ind	ex 3					
	Range	_	Unit	_	active	_	default	_
	8				moment			
		Failure time 1	for failui	re with	Set			
	Name	ind	ex 3		method	-	Access	RO
P10.81					active			
	Range	-	Unit	s		-	default	-
					moment			
		I						
	Name	Rotational sp	eed of th	ne fault	Set	_	Access	RO
D10.00	Name	with index 3			method	_	Access	RO
P10.82					active			
	Range	- Unit rpm		moment	-	default	-	
					11101110111			
		TCI 1	C.41		G 4			
	Name	The rms value			Set	-	Access	RO
P10.83		of the fault	with inc	lex 3	method			
	Range	_	Unit	A	active	_	default	_
	Range	_	Cint		moment	_	delauit	_
		Instantaneou	ıs value	of the				
	Name	V-phase curre			Set	_	Access	RO
P10.84	Tvallie	1	ndex 3	ic iddit	method		7100055	RO
F10.64		Willi	ildex 3		.•			
	Range	-	Unit	A	active	_	default	-
					moment			
		Instantane	ous valu	e of	G - 4			
	Name	W-phase cu	rrent for	fault	Set	_	Access	RO
P10.85		with i	ndex 3		method			
		with fildex 3		active				
	Range	- Unit A			-	default	-	
				moment				
		Τ						
	Name	Capacitor voltage of the fault		Set	_	Access	RO	
D10.96	- Tallic	with i	ndex 3		method		1100033	
P10.86	D		T	T 7	active		1.0.1	
	Range	-	Unit	V	moment	-	default	-
		I.						

	Name	The temperat		ne fault	Set	-	Access	RO
P10.87		with i	ndex 3		method			
	Range	-	Unit	℃	active moment	-	default	-
		DI status of	the faul	t with	Set			
	Name		ex 3		method	-	Access	RO
P10.88					active			
	Range	-	Unit	-	moment	-	default	-
		The DO state	us of the	e fault	Set			
	Name	with i	ndex 3		method	-	Access	RO
P10.89					active			
	Range	-	Unit	-	moment	-	default	-
		<u>I</u>				<u>I</u>		I
		The fault cod	le for th	e fault	Set			T =
	Name	with i	with index 4			-	Access	RO
P10.90	-	***			active			
	Range	- Unit -			moment	-	default	-
		I						
) T	Failure time f	for failu	re with	Set			D.O.
D10.01	Name	ind	ex 4		method	-	Access	RO
P10.91	D		T I 14		active		1 - 6 14	
	Range	-	Unit	S	moment	-	default	-
	Name	Rotational sp	eed of th	ne fault	Set		A 22222	P.O.
D10.02	Name	with i	ndex 4		method	-	Access	RO
P10.92	Danga	_	Unit	ram	active		default	
	Range	-	Ollit	rpm	moment	-	ueraun	_
	Name	The rms value	e of the	current	Set	_	Access	RO
P10.93	Ivallic	of the fault	with inc	lex 4	method	-	Access	KO
1 10.93	Range	_	Unit	A	active	_	default	
	Range	_	Omi	Α	moment	_	deraun	_
		Instantaneous value of			Set			
	Name	V-phase current for fault		method	-	Access	RO	
P10.94		index 4						
	Range	_	Unit	A	active	_	default	_
	Tungo		Cint	11	moment		aciaan	
		T						
P10.95	Name	Instantaneou	ıs value	of the	Set	-	Access	RO

		W-phase curre	ent for th	ne fault	method			
		with i	ndex 4					
	Range		Unit	A	active	_	default	_
	Range	-	Oilit	Λ	moment	-	derauit	
	Name	Capacitor v	oltage	of the	Set	_	Access	RO
P10.96	rvanic	fault wit	h index	4	method	_	Access	RO
1 10.50	Range	_	- Unit V		active	_	default	_
	Range	_	Cilit V		moment	_	derauit	_
	Name	The temperat	ure of th	e fault	Set	_	Access	RO
P10.97	Ivallic	with index 4			method	_	Access	KO
1 10.97	Range	_	Unit	°C	active	_	default	_
	Kange	_	Oilit		moment	_	uciauit	_
	Name	DI state of t	he fault	with	Set	_	Access	RO
P10.98	Ivallic	ind	ex 4		method	_	Access	KO
1 10.96	Range		Unit		active		default	
	Range	- Unit -		moment	_	uciauit	_	
	Name	The DO status of the fault			Set	_	Access	RO
P10.99	Ivallic	with index 4		method	-	Access	KO	
1 10.33	Range	_	Unit		active	_	default	_
	Kange	-	Ollit	_	moment	-	derauit	_

10.12 P11 group parameters - multi-speed parameters

P11.01		ame	Multi-speed r	unning n	node	Set method	Stop to set	Access	RW
F11.01	R	ange	0~2 Unit -		active moment	Immediately	default	0	
		S			i-speed runni	ng mode			
			1			Cycle run	<u> </u>		
			2			O switch run	ning		

P11.02	Name	total segment count		Set method	anytime	Access	RW	
F11.02	Range	1~16	Unit	-	active moment	Immediately	default	16

P11.03			running	time unit		Set method	anytime	Access	RW
P11.03	R	ange	0~1	Unit	-	active moment	Immediately	default	1
		S	etting			running time	unit		
			0	ms					
			1			S			

D11 04	Name	Accelerat	Acceleration time 1		Set method	anytime	Access	RW
P11.04	Range	0~65535	Unit	ms	active moment	Immediately	default	500

P11.05	Name	Deceleration time 1			Set method	anytime	Access	RW
	Range	0~65535	Unit	ms	active moment	Immediately	default	500

P11.06	Name	Acceleration time 2			Set method	anytime	Access	RW
	Range	0~65535	Unit	ms	active moment	Immediately	default	500

Set

P11.07	Name	Deceleration time 2			method	anytime	Access	RW
	Range	0~65535	Unit	ms	active moment	Immediately	default	500
D11 00	Name	Acceleration time 3			Set method	anytime	Access	RW
P11.08	Range	0~65535	Unit	ms	active moment	Immediately	default	500
					'		,	
D11 00	Name	Deceleration time 3			Set method	anytime	Access	RW
P11.09	Range	0~65535	Unit	ms	active moment	Immediately	default	500
					1			
D11.10	Name	Acceleration time 4			Set method	anytime	Access	RW
P11.10	Range	0~65535	Unit	ms	active moment	Immediately	default	500
					'			
D11 11	Name	Deceleration time 4			Set method	anytime	Access	RW
P11.11	Range	0~65535	Unit	ms	active moment	Immediately	default	500
D11 12	Name	The size of the speed command of the first stage			Set method	anytime	Access	RW
P11.12	Range	-32767~32767	7 Unit	rpm	active moment	Immediately	default	0
					'			
P11.13	Name	The first speed command running time			Set method	anytime	Access	RW
	Range	0~32767	Unit	-	active moment	Immediately	default	10
The unit	of this paran	neter is set in P1	1.03.					
P11.14	Name	The first section speed acceleration and deceleration time selection			Set method	anytime	Access	RW
	Range	0~4	Unit	-	active moment	Immediately	default	0

Setting	Acceleration and deceleration time selection
0	Use universal speed mode acceleration and deceleration
	time
1	Use acceleration and deceleration time 1
2	Use acceleration and deceleration time 2
3	Use acceleration and deceleration time 3
4	Use acceleration and deceleration time 4

P11.15	Name	The size of the speed command of the second stage		Set method	anytime	Access	RW	
	Range	-32767~32767	-32767~32767 Unit rpm		active moment	Immediately	default	0

	Name The second speed command				Set	anytime	Access	RW		
		running time			method		110000	1000		
P11.16	Range	nge 0~32767	Unit		active	Immediately	default	10		
	Range	0/32/07	Omi	_	moment	Illimediatery	delauit	10		
The unit of this parameter is set on P11.03.										

P11.17	Name	acceleration	The second section speed celeration and deceleration time selection		Set method	anytime	Access	RW
	Range	0~4	Unit	-	active moment	Immediately	default	0

Setting	Acceleration and deceleration time selection
0	Use universal speed mode acceleration and deceleration
	time
1	Use acceleration and deceleration time 1
2	Use acceleration and deceleration time 2
3	Use acceleration and deceleration time 3
4	Use acceleration and deceleration time 4

	Name	The size of	the spee	ed	Set	anytime	Access	RW
P11.18	command of the third stage			method	anythic	Access	IXW	
P11.18	Range	-32767~32767 Unit rpm		active	Immediately	default	0	
					moment			

Name		The third speed command			Set	anvtime	Access	RW
P11.19	Name	running time			method	anytime	Access	ΙζVV
	Range	0~32767 Unit -		active	Immediately	default	10	

				moment		
The unit	of this param	neter is set on P11.	03.			

P11.20	Name		ation	section s and dece selection	eleration	Set method	anytime	Access	RW
	Range	0~4	ļ	Unit	-	active moment	Immediately	default	0
	Setti	ag Acceleration			ration and	deceleration	time selection		
	0			Use universal speed mode acceleration and					
					dece	eleration time	e		
	1		Use acceleratio				ration time 1		
	2		Use acceleration				ration time 2		
	3		Use acceleration				ration time 3		
	4			Use a	cceleratio	n and deceler	ration time 4		

	Nama	The size of	the spec	ed	Set	anytima	Access	RW
D11 21	Name command of the fourth			stage	method	anytime	Access	KW
P11.21	Range	-32767~32767	-32767~32767 Unit rpm			Immediately	default	0
					moment			

	Nama	The fourth spee	d comm	nand	Set		A	DW	
Name Name		running time			method	anytime	Access	RW	
P11.22	Range	0~32767	Unit	-	active moment	Immediately	default	10	
The unit of this parameter is set on P11.03.									

P11.23	Name accelerat			ion a	section and dece	eleration	Set method	anytime	Access	RW
		Range	0~4		Unit	1	active moment	Immediately	default	0
		Set		Accelei						
			0	Use universal speed mode acceleration and						
				deceleration time						
			1		Use a	cceleration	n and deceler	ration time 1		
			2		Use a	cceleration	n and deceler	ration time 2		
		3			Use a	cceleration	n and deceler	ration time 3		
			4		Use a	cceleration	n and deceler	ration time 4		

	Name	The size of to	•		Set method	anytime	Access	RW
P11.24		command of th	e mui s	tage	memod			
111.24	Range	-32767~32767	Unit	rpm	active moment	Immediately	default	0

	Name The fifth speed command				Set	on time	Aggagg	RW
D11 25	Name	running time		method	anytime	Access	KW	
P11.25	Range	0~32767	Unit	-	active moment	Immediately	default	10
The unit of this parameter is set on P11.03.								

P11.26	Name		The fifth section acceleration and d time select		and deceleration		anytime	Access	RW
	Range	0~4	1	Unit	-	active moment	Immediately	default	0
	Setti	ng		Accelei	ration and	deceleration	time selection		
			TT		1	. 4 1			

Setting	Acceleration and deceleration time selection
0	Use universal speed mode acceleration and deceleration
	time
1	Use acceleration and deceleration time 1
2	Use acceleration and deceleration time 2
3	Use acceleration and deceleration time 3
4	Use acceleration and deceleration time 4

D11 27	Name	The size of the speed command of the sixth stage			Set method	anytime	Access	RW
P11.27	Range	-32767~32767	Unit	rpm	active moment	Immediately	default	0

B11.00	Name	The sixth speed command running time			Set method	anytime	Access	RW
P11.28	Range	0~32767	Unit	-	active	Immediately	default	10
				moment				
The unit	The unit of this parameter is set on P11.03.							

P11.29	Name	The sixth acceleration time		eleration	Set method	anytime	Access	RW
	Range	0~4	Unit	-	active moment	Immediately	default	0

Setting	Acceleration and deceleration time selection
0	Use universal speed mode acceleration and deceleration
	time
1	Use acceleration and deceleration time 1
2	Use acceleration and deceleration time 2
3	Use acceleration and deceleration time 3
4	Use acceleration and deceleration time 4

P11.30	Name	The size of command of stag	the seve		Set method	anytime	Access	RW
	Range	-32767~32767	Unit	rpm	active	Immediately	default	0
					moment			

P11.31	Name	The seventh speed command running time			Set method	anytime	Acces s	RW
F11.51	Range	0~32767	Unit	-	active	Immediately	default	10
					moment			
The unit of this parameter is set on P11.03.								

P11.32	Name		The seventh section speed acceleration and deceleration time selection			Set method	anytime	Access	RW
	Range	0~	0~4		1	active moment	Immediately	default	0
	Settin	g		Accelei	ration and	deceleration	time selection		

Setting	Acceleration and deceleration time selection					
0	Use universal speed mode acceleration and deceleration					
	time					
1	Use acceleration and deceleration time 1					
2	Use acceleration and deceleration time 2					
3	Use acceleration and deceleration time 3					
4	Use acceleration and deceleration time 4					

	Name	The size of	the spec	ed	Set	anytima	Aggass	RW
D11 22	Name	command of the	eighth	stage	method	anytime	Access	KW
P11.33	Range	-32767~32767	32767~32767 Unit rpm		active	Immediately	default	0
					moment			

	Nama	The eighth speed command			Set	any time a	Aggaga	RW
P11.34 Name		running time			method	anytime	Access	KW
F11.34	Range	0~32767	Unit	ı	active moment	Immediately	default	10
The unit	nit of this parameter is set on P11.03.						·	

P11.35	Name		eration	and dece	eleration	Set method	anytime	Access	RW
	Range	0~	-4	Unit	-	active moment	Immediately	default	0
	Settin	g		Accelei	ration and	deceleration	time selection		
	0		Use	universa	l speed mo	de accelerat	ation		
						time			
	1			Use a	cceleratio	n and deceler	ration time 1		
	2			Use a	cceleratio	n and deceler	ration time 2		
	3		Use acceleration and deceleration time 3						
	4			Use a	cceleratio	n and deceler	ration time 4		

Name		The size of	the spec	ed	Set	anytime	Agggg	RW
P11.36	Name	command of th	e ninth	stage	method	anytime	Access	I N W
P11.30	Range	-32767~32767	32767~32767 Unit rpm		active moment	Immediately	default	0
					moment			

Name	Name	The ninth speed		and	Set method	anytime	Access	RW
P11.37	Range	0~32767	Unit	-	active moment	Immediately	default	10
The unit of this parameter is set on P11.03.								

P11.38	Name		ation	section s and dece selection	eleration	Set method	anytime	Acc	ess	RW
	Range	0~4	0~4		-	active moment	Immediately	defa	default	
	Setti	ng		Accele	ration and	deceleration	time selection			
	0			Use un	niversal sp	eed mode ac	celeration and			
					dece	eleration time	e			
	1			Use a	cceleratio	n and decele	ration time 1			
	2			Use a	cceleratio	n and decele	ration time 2			

3	Use acceleration and deceleration time 3
4	Use acceleration and deceleration time 4

D11 20	Name		The size of the speed command of the tenth stage		Set method	anytime	Access	RW
P11.39	Range	-32767~32767	Unit	rpm	active moment	Immediately	default	0

Name P11.40		The tenth spee		nand	Set method	anytime	Access	RW
P11.40	Range	0~32767	Unit	1	active moment	Immediately	default	10
The unit of this parameter is set on P11.03.								

P11.41	Name	The tenth section speed acceleration and deceleration time selection			Set method	anytime	Access	RW
	Range	0~4	Unit	-	active moment	Immediately	default	0

Setting	Acceleration and deceleration time selection
0	Use universal speed mode acceleration and deceleration
	time
1	Use acceleration and deceleration time 1
2	Use acceleration and deceleration time 2
3	Use acceleration and deceleration time 3
4	Use acceleration and deceleration time 4

P11.42	Name	command of t	The size of the speed command of the eleventh stage		Set method	anytime	Access	RW
	Range	-32767~32767	-32767~32767 Unit rpm		active moment	Immediately	default	0

	Name	The eleventh spe	eed com	mand	Set	anytime	Agggg	RW
D11 42	Name	running	time		method	anytime	Access	KW
P11.43	Range	0~32767	Unit	-	active moment	Immediately	default	10
The unit	of this param	neter is set on P11.	.03.					

P11.44	Name		The eleventh section speed acceleration and deceleration time selection			Set method	anytime	Access	RW
	Range	0~	4	Unit	-	active moment	Immediately	default	0
	Settir	ng		Accele	eration and	deceleration t	ime selection		
	0		Use	universa	al speed mo	de acceleration	on and decelera	tion	
						time			
	1			Use	acceleration	and decelera	ntion time 1		
	2			Use	acceleration	and decelera	ation time 2		
	3			Use	acceleration	and decelera	ation time 3		
	4			Use	acceleration	and decelera	ation time 4		

P11.45	Name	The size of command of stag	the twel		Set method	anytime	Access	RW
	Range	-32767~32767	Unit	rpm	active moment	Immediately	default	0

D11 46	Name	The twelfth sperunning		mand	Set method	anytime	Access	RW
P11.46	Range	0~32767	Unit	-	active moment	Immediately	default	10
The unit	of this param	neter is set on P11.	.03.					

P11.47	Name		The twelfth section speed acceleration and deceleration time selection			Set method	anytime	Access	RW
	Range	0~	4	Unit	-	active moment	Immediately	default	0
	Settin	g		Accele	eration and	deceleration t	ime selection		
	0		Use	univers	al speed mo	de acceleration	on and decelera	tion	
						time			
	1			Use	acceleration	and decelera	ation time 1		
	2			Use	acceleration	and decelera	ntion time 2		
	3			Use	acceleration	and decelera	ation time 3		
	4			Use	acceleration	and decelera	ntion time 4		

P11.48	Name	The size of command of the stag	ne thirte		Set method	anytime	Access	RW
	Range	-32767~32767	Unit	rpm	active moment	Immediately	default	0

	Name	The thirteer command rui	•		Set method	anytime	Access	RW
P11.49	Range	0~32767	Unit	-	active moment	Immediately	default	10
The unit	of this param	neter is set on P11.	.03.	•				

P11.50	Name	The thirteen acceleration time		eleration	Set method	anytime	Access	RW
	Range	0~4	Unit	-	active moment	Immediately	default	0

Setting	Acceleration and deceleration time selection
0	Use universal speed mode acceleration and deceleration
	time
1	Use acceleration and deceleration time 1
2	Use acceleration and deceleration time 2
3	Use acceleration and deceleration time 3
4	Use acceleration and deceleration time 4

P11.51	Name	The size of command of the stag	e fourte		Set method	anytime	Access	RW
	Range	-32767~32767	Unit	rpm	active moment	Immediately	default	0

P11.52	Name	The fourteen	•		Set method	anytime	Access	RW
P11.32	Range	0~32767	Unit	-	active moment	Immediately	default	10
The unit	of this param	eter is set on P11.	.03.					

P11.53 Name The fourteenth section speed acceleration and deceleration time selection time selection
--

Range	0~4	0~4		-	active moment	Immediately	de	fault	0
Setti	ng		Accele						
0		Use	Jse universal speed mode acceleration and deceleration						
			time						
1			Use acceleration and deceleration time 1						
2			Use acceleration and deceleration time 2						
3			Use acceleration and deceleration time 3						
4			Use acceleration and deceleration time 4						

P11.54	Name	The size of the speed command of the fifteenth stage			Set method	anytime	Access	RW
	Range	-32767~32767	Unit	rpm	active moment	Immediately	default	0

	Name	The fifteenth spe	eed com	mand	Set		anytime Access 1			
P11.55	Name	running time			method	anytime	Access	RW		
F11.33	Range	0~32767	Unit	-	active moment	Immediately	default	10		
The unit	The unit of this parameter is set on P11.03.									

P11.56	Name	acceleration	The fifteenth section speed acceleration and deceleration time selection			anytime	Access	RW
	Range	0~4	Unit	-	active moment	Immediately	default	0

Setting	Acceleration and deceleration time selection
0	Use universal speed mode acceleration and deceleration
	time
1	Use acceleration and deceleration time 1
2	Use acceleration and deceleration time 2
3	Use acceleration and deceleration time 3
4	Use acceleration and deceleration time 4

P11.57	Name The size of the speed command of the sixteenth stage		Set method	anytime	Access	RW		
	Range	-32767~32767	Unit	rpm	active moment	Immediately	default	0

	Nome	The sixteen	th speed	d	Set	ti	e Access F		
D11.50	Name	command running time			method	anytime	Access	RW	
P11.58	Range	0~32767	Unit	-	active moment	Immediately	default	10	
The unit of this parameter is set on P11.03.									

P11.59	Name		ation		on speed eleration n	Set method	anytime	Ac	ccess	RW
	Range	0~4		Unit	-	active moment	Immediately	de	fault	0
	Sett	ting	ng Acceleration and d			deceleration t	ime selection			
	()		Use universal speed mode acceleration and						
				deceleration time						
	1			Use	acceleration	and decelera	ition time 1			
	2	2		Use	acceleration	and decelera	ation time 2			
	3	3		Use	acceleration	and decelera	ation time 3			
	4	1		Use	acceleration	and decelera	ation time 4			

10.13 P12 group parameters - virtual DI DO parameters

	Name	Virtual 1	DI1 func	tion	Set	any tima	RW				
D12.01	Name	configuration			method	anytime	Access	KW			
P12.01	Range	0~99	Unit	-	active moment	Immediately	default	0			
The spec	The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

	Name	Virtual 1	DI2 func	tion	Set anytime Acce		A 00000	RW		
D12.02	Name	conf	configuration			anytime	Access	KW		
P12.02	Range	0~99	Unit	-	active moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

	Name	Virtual 1	DI3 func	tion	Set	anytime	Access	RW		
P12.03	TAILLE	conf	figuration		method		1100033	1000		
P12.03	Range	0~99	Unit	-	active moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

	Nama	Virtual 1	DI4 func	tion	Set	anytime Access		RW		
D12.04	Name	configuration			method	anyume	Access	KW		
P12.04	Range	0~99	Unit	-	active moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

	Name		DI5 func		Set	anytime	Access	RW		
D12.05		configuration		1	method					
P12.05	Range	0~99	Unit	-	active moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

	Name		DI6 func		Set	anytime	Access	RW		
D12.06		conf	iguration	1	method					
P12.06	Range	0~99	Unit	-	active moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

	Name	Virtual DI7 function configuration			Set method	anytime	Access	RW		
P12.07	Range	0~99	Unit	-	active moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

	Name	Virtual 1	DI8 func	tion	Set	anytime	Access	RW		
D12.09			configuration		method	anytime	Access	IXVV		
P12.08	Range	0~99	Unit	-	active moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

	Name	Virtual 1	DI9 func	tion	Set	any tima	A 00000	RW		
P12.09		configuration		method	anytime	Access	KW			
P12.09	Range	0~99	Unit	-	active moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

	Name	Virtual I			Set	anytime	Access	RW		
D12 10		configuration		method						
P12.10	Range	0~99	Unit	-	active moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

	Nome	Virtual I	DI11 fun	ction	Set		A	RW		
Name P12.11		configuration		method	anytime	Access	KW			
P12.11	Range	0~99	Unit	-	active moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

	Name	Virtual I			Set	anytime	Access	RW		
P12.12		configuration			method					
P12.12	Range	0~99	Unit	-	active moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

D12 12	Name	Virtual DI13 function configuration			Set method	anytime	Access	RW	
P12.13	Range	0~99	Unit	-	active moment	Immediately	default	0	
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.									

	Name	Virtual DI14 function configuration			Set method	anytime	Access	RW		
P12.14	Th.				active	T 1' 4 1	1.6.1	0		
	Range	0~99	Unit	-	moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

	Name	Virtual I	DI15 fun	ction	Set	anytime	Access	RW		
		configuration		method	anytime	Access	IXVV			
P12.15	Range	0~99	Unit	-	active moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

	Name	Virtual I	DI16 fun	ction	Set	anytime		RW		
P12.16			iguration	1	method	unythine	7100035			
P12.10	Range	0~99	Unit	-	active moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

	Name	Virtual I	DI20 fundiguration		Set method	anytime	Access	RW
P12.17	Range	0~99	Unit	-	active moment	Immediately	default	0
The spec	The specific function of the VDI port is the same as the DI port function. For details, see P06.01.							

	Name	Virtual I	DI21 fun	ction	Set		A	RW	
P12.18	.18	conf	iguration	1	method	anytime	Access	KW	
P12.18	Range	0~99	Unit	-	active moment	Immediately	default	0	
The spec	The specific function of the VDI port is the same as the DI port function. For details, see P06.01.								

D12 10	Name	The monito DI20 and vir	Ü	lue of virtual	Set method	-	Access	RO
P12.19	Range	-	Unit	-	active moment	-	default	-

D12 20	Name	Virtual DI1- settin	DI16 inp	•	Set method	anytime	Access	RW
P12.20	Range	0~65535	Unit	-	active moment	Immediately	default	0

P12.21	N	lame	Virtual I	DI1 level	type	Set method	anytime	A	ccess	RW
F12.21	R	ange	0~1	Unit	-	active moment	Immediately	de	efault	0
		S	etting			Level type	;			
			0		Wri	te 1 is always	s valid			
			1	Valid on rising edge						

P12.22	N	lame	Virtual I	DI2 level	type	Set method	anytime	Ad	ccess	RW
F12.22	R	ange	0~1	Unit	1	active moment	Immediately	de	fault	0
		S	etting			Level type	:			
			0	0			s valid			
			1	1 V			edge			

P12.23	N	lame	Virtual I	DI3 level	type	Set method	anytime	Access	RW
F 12.23	Range		0~1	Unit -		active moment	Immediately	default	0
		S	Setting						
			0		Wri	te 1 is always	s valid		
		1		Valid on rising edge					

P12.24	N	lame	Virtual I	DI4 level	type	Set method	anytime	Access	RW
F12.24	R	ange	0~1	Unit	ı	active moment	Immediately	default	0
		S	etting	ing			:		
			0	-			s valid		
			1	1 Va			edge		

P12.25	N	Name	Virtual I	DI5 level	type	Set method	anytime	Ac	cess	RW
F12.23	F	Range	0~1	Unit	-	active moment	Immediately	dei	default	
		S	etting 0		Wri	Level type te 1 is always				
			1 Va			lid on rising	edge			

P12.26	N	lame	Virtual I	DI6 level	type	Set method	anytime	Access	RW
P12.20	R	ange	0~1	0~1 Unit -		active	Immediately	default	0
						moment			
		S	etting			Level type			
			0			te 1 is always	s valid		
			1				edge		

P12.27	N	lame	Virtual I	DI7 level	type	Set method	anytime	Ac	ccess	RW
Г12.2/	R	ange	0~1	0~1 Unit -		active	Immediately	de	fault	0
						moment				
		S	etting	tting			:			
			0	0 Wri			s valid			
			1				edge			

D12 20	Name	Virtual I	DI8 level	type	Set method	anytime	Access	RW
P12.28	Range	0~1	Unit	-	active moment	Immediately	default	0

Setting	Level type
0	Write 1 is always valid
1	Valid on rising edge

D12 20	N	ame	Virtual D	DI9 level	type	Set method	anytime	A	ccess	RW
P12.29	R	ange	0~1	Unit	-	active	Immediately	de	efault	0
						moment				
		S	etting			Level type				
			0		Wri	te 1 is always	s valid			
						lid on rising	edge			

P12.30	N	lame	Virtual D	I10 leve	l type	Set method	anytime	A	ccess	RW
F12.30	R	ange	0~1	Unit	-	active	Immediately	de	efault	0
						moment				
		S	etting	Level type						
			0 W			te 1 is always				
			1 V			lid on rising	edge			

P12.31	N	lame	Virtual D	I11 leve	l type	Set method	anytime	A	ccess	RW
F12.31	R	ange	0~1	Unit	-	active moment	Immediately	default		0
		S	etting		W	Level type				
						te 1 is always llid on rising				

D12 22	Name P12.32			I12 leve	l type	Set method	anytime	A	ccess	RW
P12.32	R	ange	0~1	Unit	-	active moment	Immediately	default		0
		S	etting		Wri	Level type te 1 is always				
						llid on rising				

P12.33	Name	Virtual DI13 level type	Set method	anytime	Access	RW
--------	------	-------------------------	---------------	---------	--------	----

R	ange	0~1	Unit	-	active moment	Immediately	default	0
	S	etting			Level type			
		0		Wri	te 1 is always	s valid		
		1		Va	lid on rising	edge		

D12 24	Name Virtual				l type	Set method	anytime	A	ecess	RW
F12.34	R	ange	0~1	Unit	-	active moment	Immediately	de	fault	0
		S	etting		Wri	Level type				
						llid on rising				

D12 25	Name Virtual D				l type	Set method	anytime	A	ccess	RW
F12.33	R	ange	0~1	Unit	-	active moment	Immediately	de	efault	0
		S	etting			Level type				
			0 V			te 1 is always	s valid			
			1 Va			lid on rising	edge			

P12.36	N	lame	Virtual D	I16 leve	l type	Set method	anytime	A	ccess	RW
F 12.30	R	ange	0~1	Unit	-	active moment	Immediately	de	efault	0
		S	etting 0							
						llid on rising	edge			

P12.37	1	Name	Virtual D	DI20 level type		Set method	anytime	Acc	ess	RW
F12.57	F	Range	0~1	Unit	-	active moment	Immediately	defa	ault	0
		S	etting 0			Level type te 1 is always	s valid			

P12.38	N	lame	Virtual DI21 level type			Set method	anytime	Access	RW
P12.36	R	ange	0~1 Unit -			active	Immediately	default	0
						moment			
		S	etting			Level type	:		
			0	0			s valid		
			1 Va			llid on rising	edge		

	Name	Virtual DO	1 config	uration	Set	anytime	Access	RW		
P12.41	Name	register			method	anythic	Access	IXVV		
P12.41	Range	0~99	Unit	-	active moment	Immediately	default	0		
The VDO port function is the same as the DO port function. For details, please refer to P06.41.										

	Name	Virtual DO2 configuration			Set	anytime	Access	RW		
D12.42		register		method			ı			
P12.42	Range	0~99	Unit	1	active	Immediately	default	0		
	8-				moment			ı		
The VDO port function is the same as the DO port function. For details, please refer to P06.41.										

D12 42	Name	Name		3 configuration gister n		anytime	Access	RW		
P12.43	Range	0~99	Unit	-	method active moment	Immediately	default	0		
The VDO port function is the same as the DO port function. For details, please refer to P06.41.										

	Name	Virtual DO	4 config	uration	Set	anytime	Access	RW		
D12.44	TAILLE	re	register		method		7100055	10,1		
P12.44	Range	0~99	Unit	-	active moment	Immediately	default	0		
The VDO port function is the same as the DO port function. For details, please refer to P06.41.										

D12.45	Name	Virtual DO5 configuration register			Set method	anytime	Access	RW		
P12.45	Range	0~99	Unit	-	active moment	Immediately	default	0		
The VDO port function is the same as the DO port function. For details, please refer to P06.41.										

	Name	Virtual DO	Virtual DO6 configuration			ony time o	A 00000	RW	
D12.46	Name	register		method	anytime	Access	KW		
P12.46	Range	0~99	Unit	-	active moment	Immediately	default	0	
The VDO port function is the same as the DO port function. For details, please refer to P06.41.									

	Name	Virtual DO		uration	Set	anytime	Access	RW		
D12.47		register		method						
P12.47	Range	0~99	Unit	-	active moment	Immediately	default	0		
The VDO port function is the same as the DO port function. For details, please refer to P06.41.										

P12.48	Name	Virtual DO8 configuration register			Set method	anytime	Access	RW	
P12.48	Range	0~99	Unit	-	active moment	Immediately	default	0	
The VDO port function is the same as the DO port function. For details, please refer to P06.41.									

Name P12.49		Virtual DO9 configuration register			Set method	anytime	Access	RW	
P12.49	Range	0~99	Unit	-	active moment	Immediately	default	0	
The VDO port function is the same as the DO port function. For details, please refer to P06.41.									

	Name	Virtual DO10			Set	any time a	A 00000	RW	
D12.50	con		uration register		method	anytime	Access	KW	
P12.50	Range	0~99	Unit	-	active moment	Immediately	default	0	
The VDO port function is the same as the DO port function. For details, please refer to P06.41.									

	Name			anytime	Access	RW			
D12.51		configur	ation reg	gister	method				
P12.51	Range	0~99	Unit	-	active moment	Immediately	default	0	
The VDO port function is the same as the DO port function. For details, please refer to P06.41.									

	Nama	Virtu	ıal DO12	2	Set	ony time o	Aggagg	RW		
P12.52	Name	configur	onfiguration register method anytime Acc			Access	KW			
P12.32	Range	0~99	Unit	-	active moment	Immediately	default	0		
The VDO port function is the same as the DO port function. For details, please refer to P06.41.										

	NI	Virtu	ıal DO13	3	Set	4:	A	DW			
P12.53	Name	configur	ation reg	gister	method	anytime	Access	RW			
F12.55	Range	0~99 Unit -			active moment	Immediately	default	0			
The VDO port function is the same as the DO port function. For details, please refer to P06.41.											

	Name	Virtu configur	al DO14	-	Set method	anytime	Access	RW			
P12.54	Range	0~99	Unit	-	active moment	Immediately	default	0			
The VDO port function is the same as the DO port function. For details, please refer to P06.41.											

D12.55	Name	Virtual DO15 configuration register			Set method	anytime	Access	RW		
P12.55	Range	0~99	Unit	-	active moment	Immediately	default	0		
The VDO port function is the same as the DO port function. For details, please refer to P06.41.										

D10.56	Name	Virtual DO16 configuration register			Set method	anytime	Access	RW			
P12.56	Range	0~99	Unit	-	active moment	Immediately	default	0			
The VDO port function is the same as the DO port function. For details, please refer to P06.41.											

	Nama	Virtu	ıal DO20	0	Set	ati	A	RW		
D12.57	Name	configur	ation reg	gister	method	anytime	Access	KW		
P12.57	Range	0~99	Unit	-	active moment	Immediately	default	0		
The VDO port function is the same as the DO port function. For details, please refer to P06.41.										

	Name	Virtu	ıal DO2	1	Set	any time a	A 00000	RW				
P12.58	Name	configur	ation reg	gister	method	anytime	Access	KW				
F12.38	Range	0~99 Unit		-	active moment	Immediately	default	0				
The VD0	The VDO port function is the same as the DO port function. For details, please refer to P06.41.											

D12.50	Name	Output lev	Output level of virtual DO20 D021		Set method	-	Access	RO
P12.59	Range	0~3	Unit	-	active moment	-	default	-

D12 (0	Name	Virtual Do	O1-DO1 level	6 output	Set method	anytime	Access	RW
P12.60	Range	0~65535	Unit	-	active moment	Immediately	default	0

P12.61	N	lame	Active leve	el of virtual DO1		Set method	anytime	A	ccess	RW
r12.01	R	ange	ge 0~1		-	active moment	Immediately	de	efault	0
		S	etting	tting						
			0	Output 1 when valid						
			1			utput 0 when valid				

P12.62	N	ame	Active leve	l of virtual DO2 Set method			anytime	A	ccess	RW
F 12.02	Ra	ange	0~1	Unit	-	active moment	Immediately	de	efault	0
		S	etting 0			Level type atput 1 when atput 0 when	valid			

P12.63	N	lame	Active leve	el of virtual DO3		Set method	anytime	Ac	ccess	RW
F 12.03	R	Lange	0~1	Unit	-	active moment	Immediately	de	fault	0
		S	etting	tting						
			0	0 O			utput 1 when valid			
			1 Ou			atput 0 when valid				

P12.64	Name	Active leve	l of virtu	ıal DO4	Set method	anytime	Access	RW
P12.04	Range	0~1	Unit	1	active moment	Immediately	default	0

Setting	Level type
0	Output 1 when valid
1	Output 0 when valid

P12.65	N	lame	Active leve	l of virtu	al DO5	Set method	anytime	A	ccess	RW
F12.03	R	lange	0~1	Unit	-	active moment	Immediately	de	efault	0
		S	etting		Level type					
			0		Ου	tput 1 when	valid			
			1				valid			

P12.66	ı	Name	Active leve	el of virtual DO6		Set method	anytime	A	ccess	RW
P12.00	F	Range	0~1	Unit	ı	active moment	Immediately	de	efault	0
		S	Setting		0	Level type				
			1				valid			

P12.67	N	lame	Active leve	el of virtual DO7		Set method	anytime	A	ccess	RW
P12.07	R	ange	0~1	Unit	-	active moment	Immediately	de	fault	0
		S	etting	tting						
			0				valid			
			1				valid			

P12.68	N	lame	Active leve	l of virtu	ıal DO8	Set method	anytime	A	ccess	RW
P12.06	R	ange	0~1	Unit	-	active moment	Immediately	de	efault	0
		S	etting 0	9			valid			
			1				valid			

P12.69	Name	Active leve	l of virtu	ıal DO9	Set method	anytime	Access	RW
	Range	0~1	Unit	-	active	Immediately	default	0

	moment	
Setting	Level type	
0	Output 1 when valid	
1	Output 0 when valid	

D12.70	N	lame	Active le	evel of vi	irtual	Set method	anytime	Ac	cess	RW
P12.70	R	lange	0~1	Unit	-	active moment	Immediately	det	fault	0
		S	etting		Level type					
			0		Οι	tput 1 when	valid			
			1				valid			

D10.71	N	lame	Active le	evel of vi	irtual	Set method	anytime	Acc	ess	RW
P12.71	R	ange	0~1	Unit	-	active moment	Immediately	defa	default	
		S	etting			Level type				
			0		Οι	tput 1 when	valid			
			1				valid			

P12.72	N	lame	Active le	evel of v	irtual	Set method	anytime	Access	RW
P12./2	R	ange	0~1	Unit	-	active moment	Immediately	default	0
		S	etting						
			1	O			valid valid		

P12.73	1	Name	Active le	evel of vi	irtual	Set method	anytime	A	ccess	RW
F12./3	F	Range	0~1	Unit	-	active moment	Immediately	de	default	
		S	etting			Level type				
			0		Οι	itput 1 when	valid			
			1				valid			

P12.74	Nama	Active level of virtual	Set	anytima	Aggagg	RW
F12./4	Name	DO14	method	anytime	Access	IXW

R	ange	0~1	Unit	ı	active moment	Immediately	de	efault	0
	S	etting			Level type	:			
	0		Output 1 when valid						
	1		Output 0 when valid						

	N	lame	Active le	evel of v	irtual	Set	anytime	Access	RW
P12.75	1,	anne	DO15			method	anytime	7100033	1000
Range		ange	0~1	Unit	-	active	Immediately	default	0
						moment			
		S	Setting			Level type			
			0	Output 1 when valid					
			1 O			tput 0 when	valid		

D12.76	N	lame	Active le	evel of vi	irtual	Set method	anytime	Access	RW
P12.76		ange	0~1	Unit	-	active moment	Immediately	default	0
		Setting 0			Oı	Level type			
			1 Ou			itput 0 when			

D10 77	N	lame	Active le	evel of vi	irtual	Set method	anytime	A	ccess	RW
P12.77	R	ange	0~1	Unit	-	active moment	Immediately	de	efault	0
		Setting 0			Oı	Level type				
			1				valid			

D12 79	N	lame	Active le	evel of vi	irtual	Set method	anytime	A	ccess	RW
P12./6	P12.78 Range		0~1	Unit	1	active moment	Immediately de		efault	0
		S	Setting 0		Ou	Level type				
			1	1 Ou			valid			

P12.79				er the vi 16 input 12.20 is p is cleared	value powered	Set method	anytime	Access	RW	
	R	ange	0~1	Unit	-	active moment	Immediately	default	1	
						moment				
		S	Setting		Clear type					
			0	Virtual	n					
			1 Virtual DI i		rtual DI in	put value P12				
						power-on				

10.14 P13 group parameters - multi-segment position parameters

Name		Multi-segment position mode			Set method	Stop to set	Ac	cess	RW	
Range		0~2	Unit	-	active moment	Immediately def		ault	0	
Setting				Multi-segment position working mode						
	0		Stop after a single run							
		1	Cycle operation							
		2		D	switching o	peration				
When DI is switched to run, the value read (INFn.31, INFn.30, INFn.29, INFn.28) is run as the										
)	R	Range	Range 0~2 Setting 0 1 2	Range 0~2 Unit Setting M 0 1 2 I is switched to run, the value real	Name mode	Range 0~2 Unit - active moment Setting Multi-segment position 0 Stop after a sin 1 Cycle opera 2 DI switching of	Range 0~2 Unit - active moment Immediately Setting Multi-segment position working mode 0 Stop after a single run 1 Cycle operation 2 DI switching operation I is switched to run, the value read (INFn.31, INFn.30, INFn.29, INF	Range 0~2 Unit - active moment Immediately def Setting Multi-segment position working mode 0 Stop after a single run 1 Cycle operation 2 DI switching operation I is switched to run, the value read (INFn.31, INFn.30, INFn.29, INFn.28)	Range 0~2 Unit - active moment Immediately default Setting Multi-segment position working mode 0 Stop after a single run 1 Cycle operation 2 DI switching operation I is switched to run, the value read (INFn.31, INFn.30, INFn.29, INFn.28) is run a	

B12.02	Name	Total numb	er of seg	ments	Set method	anytime	Access	RW
P13.02	Range	Range 1~16 U		-	active moment	Immediately	default	16
	Name	Idle weiti	na time	unit	Set	anytime	Access	RW
D12.02	name	Idle waiting time unit			method	anytime	Access	ΙKW

113.03	R	ange	0~1	Unit	ı	active moment	Immediately	def	ault	1
		S	Setting		Ic	lle waiting ti	me unit			
			0			ms				
			1	S						

D12.04	Name	remainde me	r process	sing	Set method	anytime	Access	RW
P13.04	Range	0~1	Unit	-	active moment	Immediately	default	0

Setting	remainder processing method
0	Re-jump to the first position command to run
1	From the last stop section

Margin processing method selection: when triggering multi-segment position again, whether to jump to the first position command to run again, or to start from the position command that was stopped last time.

P13.05	Name	Absolute or relative			Set	any tima	A 2223	RW
		position con	mmand s	setting	method	anytime	Access	KW
P13.03	Range	0~1	Unit	-	active moment	Immediately	default	1

Setting	Absolute or relative position command setting
0	Absolute command
1	relative command

D12 10	Name	commands in the	Number of position commands in the first position segment			anytime	Access	RW
P13.10	Range	-2147483647 ~ 2147483647	Unit	User units	active moment	Immediately	default	100

	Name	Speed of fir	st positi	on	Set	anytime	Access	RW
P13.12	Name	segm	ent		method	anytime	Access	IXW
F13.12	Range	0~32767	Unit	rpm	active	Immediately	default	500
	-8-			1	moment			

D10.10	Name	acceleration position s			Set method	anytime	Access	RW
P13.13	Range	0~65535	Unit	ms	active moment	Immediately	default	500

	Name	idle time of f	irst posi	tion	Set	anytime	Access	RW
P13.14	Name	segm	ent		method	anythic	Access	IXW
	Range	0~32767	Unit	-	active	Immediately	default	1

				moment		
The unit	of this param	eter is set in P13	.03.			

D12 15	Name	commands i	~ Unit User units			anytime	Access	RW
P13.15	Range	-2147483647 ~ 2147483647	Unit		active moment	Immediately	default	100 00

Name P13.17		Speed of second position			Set	anytime	Access	RW
D12 17	rvanic	segm	ent		method	anytime	Hecess	IXVV
P13.17	Range	0~32767	Unit	rpm	active moment	Immediately	default	500

D12.10	Name	acceleration time of second position segment		Set method	anytime	Access	RW	
P13.18	Range	0~65535	Unit	ms	active moment	Immediately	default	500

	Name	idle time of second position			Set	anytima	Access	RW
P13.19	Name	segment		method	anytime	Access	IX VV	
P13.19	Range	0~32767	Unit	-	active moment	Immediately	default	1
The unit	of this param	eter is set in P13	.03.					

P13.20	Name	Number of position commands in the thir position segment		hird	Set method	anytime	Access	RW
P13.20	Range	-2147483647 ~ 2147483647	Unit	User units	active moment	Immediately	default	10000

D12 22			ion	Set method	anytime	Access	RW	
P13.22	Range	0~32767	Unit	rpm	active moment	Immediately	default	500

P13.23	Name	The 3th acceleration/deceleration time		Set method	anytime	Access	RW
	Range	0~65535 Unit ms		active	Immediately	default	500

				moment					
Nama	idle time of th	ird posi	tion	Set	anytim a	A 22233	RW		
Name	segm	ent		method	anyume	Access	KW		
Danca	0.22767	T Lade		active	Imm adiataly	dofault	1		
Kange	0~32/6/	Unit	-	moment	immediately	delault	1		
The unit of this parameter is set in P13.03.									
	Name Range of this param	Name segm Range 0~32767	Name segment Range 0~32767 Unit	Range 0~32767 Unit -	Name idle time of third position segment method Range 0~32767 Unit - active moment	Name idle time of third position segment segment method Range 0~32767 Unit - active moment Immediately	Name idle time of third position segment Set method anytime Access Range 0~32767 Unit - active moment Immediately default		

D12.25	Name	Number of position commands in the fourth position segment		Set method	anytime	Access	RW	
P13.25	Range	-2147483647 ~ 2147483647	Unit	User units	active moment	Immediately	default	10000

	Name Speed of fourth segmen			tion	Set method	anytime Access	Access	RW
P13.27	Range	0~32767	Unit	rpm	active moment	Immediately	default	500

P13.28	Name	The 4th acceleration/deceleration time		Set method	anytime	Access	RW	
	Range	0~65535	Unit	ms	active moment	Immediately	default	500

1	Name	idle time of fo	urth pos	sition	Set anytime		Access	RW	
D12 20		segment			method	3		10.,	
P13.29	Range	0~32767	Unit		active	Immediately	default	1	
	Range	0'-32707	Omi		moment	mimediatery	delauit	1	
The unit of this parameter is set in P13.03.									

D12 20	Number of position Name commands in the fifth position segment		Set method	anytime	Access	RW		
P13.30	Range	-2147483647 ~ 2147483647	Unit	User units	active moment	Immediately	default	10000

P13.32	Name	Speed of fifth position segment		Set method	anytime	Access	RW	
	Range	0~32767	0~32767 Unit rpm		active	Immediately	default	500

					moment			
P13.33	Name	The acceleration/o	decelera	tion	Set method	anytime	Access	RW
	Range	0~65535	Unit	ms	active moment	Immediately	default	500
	Name	idle time of f	-	tion	Set method	anytime	Access	RW
P13.34	Range	0~32767	Unit	-	active moment	Immediately	default	1
The un	it of this para	meter is set in P13	.03.				·	
,								
	Name	Number of position commands in the sixth		Set method	anytime	Access	RW	

D12.25	Name	Number of position commands in the sixth position segment		Set method	anytime	Access	RW	
P13.35	Range	-2147483647 ~ 2147483647	Unit	User units	active moment	Immediately	default	10000

	Name Speed of sixt segme			ion	Set method	anytime	Access	RW
P13.37	Range	0~32767	Unit	rpm	active moment	Immediately	default	500

P13.38	Name	The 6th acceleration/deceleration time		Set method	anytime	Access	RW	
	Range	0~65535	Unit	ms	active moment	Immediately	default	500

	Name	idle time of si	•	tion	Set	anytime	Access	RW
D12.20		segment			method			
P13.39	Range	0~32767	Unit	-	active moment	Immediately	default	1
The unit	The unit of this parameter is set in P13.03.							

P13.40	Name	Number of commands in position	the sev	venth	Set method	anytime	Access	RW
	Range	-2147483647	Unit	User	active	Immediately	default	10000

		~		units	moment					
		2147483647								
P13.42	Name	Speed of seg	wenth pos	sition	Set method	anytime	Access	RW		
113.42	Range	0~32767	Unit	rpm	active moment	Immediately	default	500		
		Th	e 7th		G - 4					
	Name	acceleration	/decelera	ation	Set	anytime	Access	RW		
P13.43		ti	me		method					
	Range	0~65535	Unit	ms	active moment	Immediately	default	500		
	Name	idle time of s	eventh po	osition	Set method	anytime	Access	RW		
P13.44		308	1110111		active					
	Range	0~32767	0~32767 Unit - er is set in P13.03.			Immediately	default	1		
The un	it of this para	meter is set in P	13.03.							
	Name	Number of posi	Number of position commands		Set	anytime	Acces	RW		
	Ivailic	in the eighth po	osition se	gment	method	anythic	S	IXVV		
P13.45		-2147483647		II	4:					
	Range	~	Unit	User	active	Immediately	default	10000		
		2147483647		units	moment					
		Speed of ei	ghth posi	ition	Set					
	Name	-	ment		method	anytime	Access	RW		
P13.47					active					
	Range	0~32767	Unit	rpm	moment	Immediately	default	500		
		Th	e 8th							
	Name	acceleration		ation	Set	anytime	Access	RW		
P13.48			me	ation	method	anythic	Access	IXW		
P13.46		LI LI	me		active					
	Range	0~65535	0~65535 Unit ms			Immediately	default	500		
					moment					
				•.•	a .					
	Name	idle time of		sition	Set	anytime	Access	RW		
P13.49		seg	ment		method					
	Range	0~32767	Unit	_	active	Immediately	default	1		
					moment					
L CEST	The unit of this parameter is set in P13.03.									

	N	Number of posi	ition com	mands	Set		A	DW
	Name	in the ninth po	sition seg	gment	method	anytime	Access	RW
P13.50	Range	-2147483647 ~ 2147483647	Unit	User units	active moment	Immediately	default	10000
D12.50	Name	Speed of n	ninth posi gment	tion	Set method	anytime	Access	RW
P13.52	Range	0~32767	0~32767 Unit rpm		active moment	Immediately	default	500
				'				
P13.53	Name 8	acceleration	e 9th n/deceler ime	Set		anytime	Access	RW
	Range	0~65535	Unit	ms	active moment	Immediately	default	500
D10.5	Name idle time of ninth position segment		sition	Set method	anytime	Access	RW	
P13.54	Range	0~32767	Unit	-	active moment	Immediately	default	1
The un	it of this para	ameter is set in P	13.03.					
	Name	Number of posi			Set method	anytime	Access	RW
P13.55	Range	-2147483647 ~ 2147483647	Unit	User units	active moment	Immediately	default	10000
D12.55	Name	Speed of to	enth posi gment	tion	Set method	anytime	Access	RW
P13.57	Range	0~32767	Unit	rpm	active moment	Immediately	default	500
P13.58	Name	acceleration	e 10th n/deceler ime	ation	Set method	anytime	Access	RW
	Range	0~65535	Unit	ms	active moment	Immediately	default	500

	Nama	idle time of te	nth pos	ition	Set	on time	Aggagg	RW
P13.59 Name		segment			method	anytime	Access	KW
r13.39	Range	0~32767	Unit	-	active moment	Immediately	default	1
The unit	The unit of this parameter is set in P13.03.							

		Number of commands in position	the ele	venth	Set method	anytime	Access	RW
P13.60	Range	-2147483647 ~ 2147483647	Unit	User units	active moment	Immediately	default	10000

D12 62	Name	Speed of elever		ition	Set method	anytime	Access	RW
P13.62	Range	0~32767	Unit	rpm	active moment	Immediately	default	500

P13.63	Name	The 1 acceleration/o	decelera	tion	Set method	anytime	Access	RW
	Range	0~65535	Unit	ms	active moment	Immediately	default	500

P13.64	Name	idle time of eleventh position segment			Set method	anytime	Access	RW	
P13.04	Range	0~32767	Unit	-	active moment	Immediately	default	1	
The unit	The unit of this parameter is set in P13.03.								

D12.65	Number of position segmen P13.65 Number of position segmen		elfth	Set method	anytime	Access	RW	
P13.03	Range	-2147483647 ~ 2147483647	Unit	User units	active moment	Immediately	default	10000

D12 (7	Name	Speed of twel		tion	Set method	anytime	Access	RW
P13.67	Range	0~32767	Unit	rpm	active moment	Immediately	default	500

P13.74

Range

The unit of this parameter is set in P13.03.

P13.68	Name	The acceleration/	decelera	ation	Set method	anytime	Access	RW
	Range	0~65535	Unit	ms	active moment	Immediately	Access default Access default Access default Access default Access	500
		_						
D12 (0	Name	idle time of tw	•	sition	Set method	anytime	Access	RW
P13.69	Range	0~32767	Unit	-	active moment	Immediately	default	1
The uni	the unit of this parameter is set in P13.03.							
D12.70	Number of position Name commands in the thirteenth position segment		Set method	anytime	Access	RW		
P13.70	Range	-2147483647 ~ 2147483647	Unit	User units	active moment	Immediately	default	10000
	<u> </u>	·	·					
	Name	Speed of thirte	-	sition	Set method	anytime	Access	RW
P13.72	Range	0~32767	Unit	rpm	active moment	Immediately	default	500
				•				
P13.73	Name	The acceleration/	decelera	ation	Set method	anytime	Access	RW
	Range	0~65535	Unit	ms	active moment	Immediately	default	500
D12.74	Name	idle time or position			Set method	anytime	Access	RW
P13.74								

P13.75	Name	Number of commands in position	the four	teenth	Set method	anytime	Access	RW
	Range	-2147483647 ~	Unit	User units	active moment	Immediately	default	10000

Unit

0~32767

active

moment

default

1

Immediately

		2147483647								
		211/10301/								
P13.77	Name	1	Speed of fourteenth position segment			anytime	Access	RW		
1131,7	Range	0~32767	Unit	rpm	active moment	Immediately	default	500		
The 14th										
P13.78	Name	acceleration		ntion	Set method	anytime	Access	RW		
	Range	0~65535	Unit	ms	active moment	Immediately	default	500		
		: 11	C.C	.1	G 4					
P13.79	Name	idle time o	n segmen		Set method	anytime	Access	RW		
	Range	0~32767	Unit	-	active moment	Immediately	default	1		
The un	it of this para	meter is set in P	13.03.							
				1						
	Name	Number of commands in position	•		Set method	anytime	Access	RW		
P13.80	Range	-2147483647 ~ 2147483647	Unit	User	active moment	Immediately	default	10000		
P13.82	Name	Speed of fif	teenth pos gment	sition	Set method	anytime	Access	RW		
F13.62	Range	0~32767	Unit	rpm	active moment	Immediately	default	500		
P13.83	Name	acceleration	The 15th acceleration/deceleration time			anytime	Access	RW		
	Range	0~65535 Unit		ms	active moment	Immediately	default	500		
D12 04	Name		ime of fifteenth position segment		Set method	anytime	Access	RW		
P13.84	Range	0~32767	Unit	-	active moment	Immediately	default	1		
The un	it of this para	meter is set in P	13.03.							

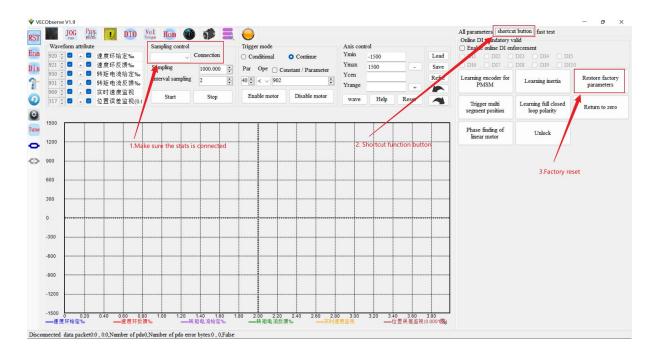
		Number o	f positio	n				
	Name	commands in position	the sixte	eenth	Set method	anytime	Access	RW
P13.85	Range	-2147483647 ~ 2147483647	Unit	User units	active moment	Immediately	default	1000
D12.05	Name	Speed of six seg	teenth po	osition	Set method	anytime	Access	RW
P13.87	Range	0~32767	Unit	rpm	active moment	Immediately	default	500
P13.88	Name	acceleration	e 16th n/deceler ime	ration	Set method	anytime	Access	RW
	Range	0~65535	Unit	ms	active moment	Immediately	default	500
P13.89	Name	idle time position	of sixtee n segmer		Set method	anytime	Access	RW
F13.09	Range	0~32767	Unit	-	active moment	Immediately	default	1
The unit	t of this para	meter is set in P	13.03.					
P13.90	Name	The 1st Dec	eleration	n time	Set method	anytime	Access	RW
F13.90	Range	0~65535	Unit	ms	active moment	Immediately	default	500
P13.91	Name	The 2st Dec	eleration	n time	Set method	anytime	Access	RW
r 13.91	Range	0~65535	Unit	ms	active moment	Immediately	default	500
D12.02	Name	Multi-segn	-		Set method	anytime	Access	RW
P13.92	Range	0~3	Unit	_	active	Immediately	default	1

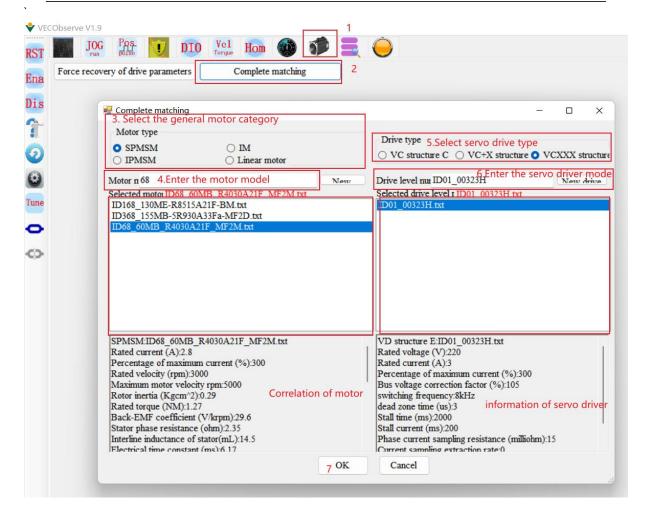
423

stops executing the multi-segment position. When BIT0=1, the rising edge triggers and does not

stop. When BIT1=0, when the multi-segment position comes from DI, a change of DI

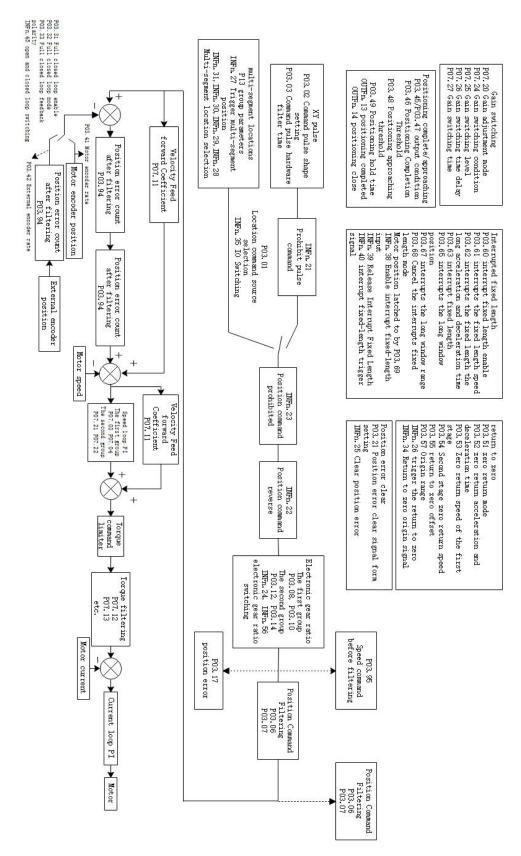
automatically triggers the multi-segment position. When BIT1=1, when the multi-segment position comes from DI, the DI change does not automatically trigger the multi-segment position, and only when INFn27 is re-triggered will the position execution be triggered.

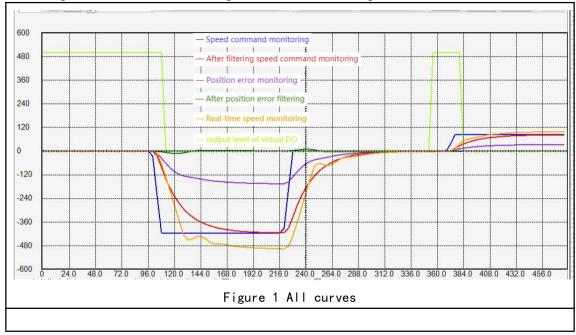

D12 02	Name		ndition for the next mmand to be sent			Set method	anytime	Access	RW	
P13.93	Range	0~1		Unit	-	active moment	Immediately	default	0	
	Setti	ng	Se	Selection of acceleration and deceleration time						
	0		It is necessary to wait for the previous position to							
			compl	efore						
				send	sending the next position command					
	1	After the previous position command is sent, wait for								
		the idle time to directly send the second position								
						command				


	Name			the spec		Set method	anytime	Access	RW
P13.94	Range	0~4		Unit	-	active moment	Immediately	default	0
	Setti	Parameter Description							
	0	0		From P13.12					
	1	1		From AI1					
	2		From AI2						
	3		From AI3(Hardware not supported)						
	4			from pulse rate					

Chapter 11 Commissioning

11.1 Factory debugging matching motor steps

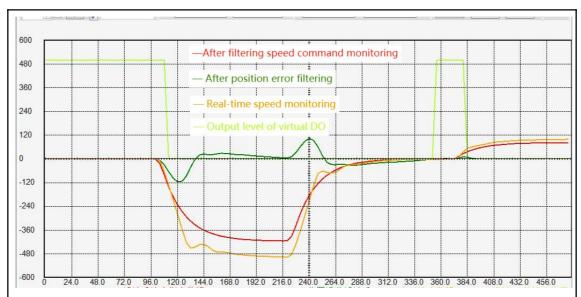
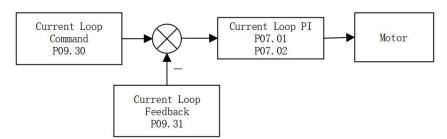

- 1. Connect the motor power cable and encoder cable, and connect the RS232 monitoring cable:
- 2. Open VECObserve and follow the steps below.

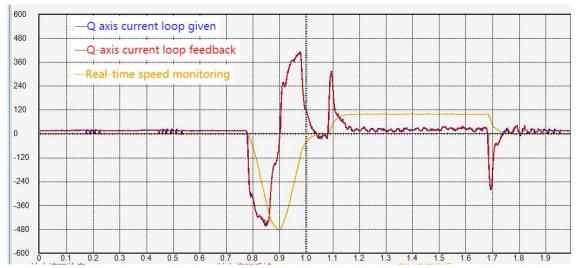

11.2 Location Mode Debugging Guidelines

11.2.1 Position Mode Block Diagram

11.2.2 Preliminary analysis of the curve

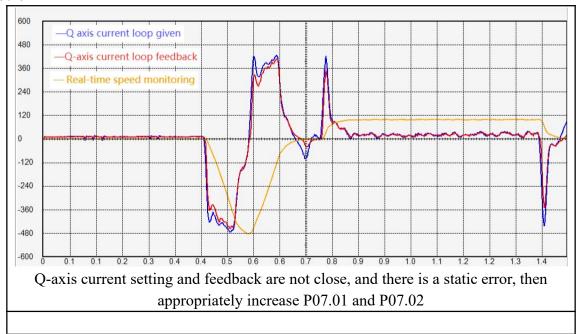
Set the servo drive to position mode, the position comes from multiple positions, run one of the positions, and record the waveform, as shown in Figure 1, the first curve is the planned speed command curve, after filtering, the filtered speed command curve is obtained, the larger the filter time constant, the more serious the lag of the filtered speed command, but the softer. Ideally, the actual velocity curve should coincide with the filtered velocity curve, which is the control target of the position loop. The position error is the accumulated value of the speed command minus the actual speed. Obviously, due to the lag of the filtering, the position error will become larger, and in the later stage of the filtering, the position error curve should coincide with the filtered position error curve. The filtered position error refers to the accumulated value of the filtered speed command minus the actual speed. As mentioned above, ideally, the actual speed curve should be coincident with the filtered speed curve, which means that the filtered speed The position error is always 0 under ideal conditions, but in fact, in the early stage of acceleration, the actual speed will lag behind the filtered speed command, that is to say, in the early stage of acceleration, the filtered position error will continue to increase, and after reaching a constant speed, the filtered position error gradually converges to zero, the speed of convergence depends on the gain of the position loop, the greater the gain, the faster the convergence. As shown in Figure 2 below.

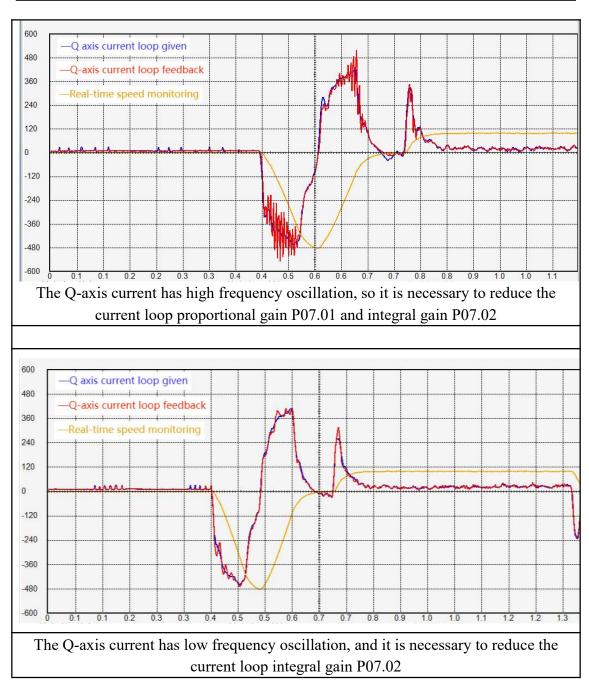



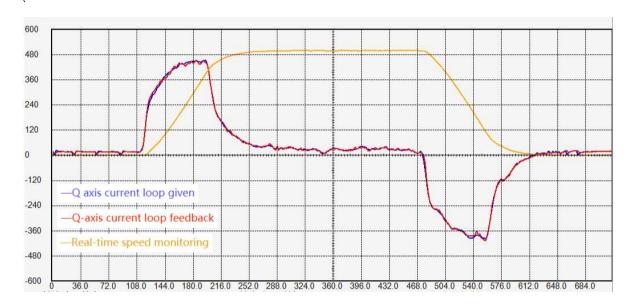

Figure 2 The filtered position error curve will increase during the acceleration process, converge during the constant speed process, and increase during the deceleration process, and eventually converge to 0. The contour of the actual speed curve is equal to the value of the filtered speed command curve. Contour plus the contour of the filtered position error curve

11.2.3 Current loop understanding and tuning

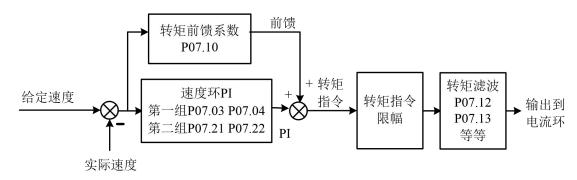
For brushless DC motors, under the condition of no excitation, the greater the current, the greater the output torque. The two are in a proportional relationship. The magnitude of output torque can be monitored through P09.31.




The control goal of the current loop PI is to ensure that the actual motor current (Q-axis current loop feedback) tracks the current command (Q-axis current loop given). As shown in the picture below. The Q-axis current loop feedback tracks the Q-axis current loop reference.


If these two curves are not tracked well, P07.01 and P07.02 need to be adjusted manually. The principle of current loop adjustment is, Increase the proportional gain and integral gain as much as possible. However, if the current feedback has high frequency oscillation, the proportional gain P07.01 should be appropriately reduced. If the current feedback has low frequency oscillation, the current loop integral gain P07.02 should be reduced. If the two curves are not close, increase P07.01 and P07.02 appropriately. P07.01 and P07.02 are generally adjusted between 100-300, and the integral gain is generally smaller than the proportional gain.

There are two kinds of current oscillations, one is high frequency oscillation and the other is low frequency oscillation. High frequency oscillation is caused by too large proportional gain P07.01. Low frequency oscillation is caused by too large integral gain P07.02.

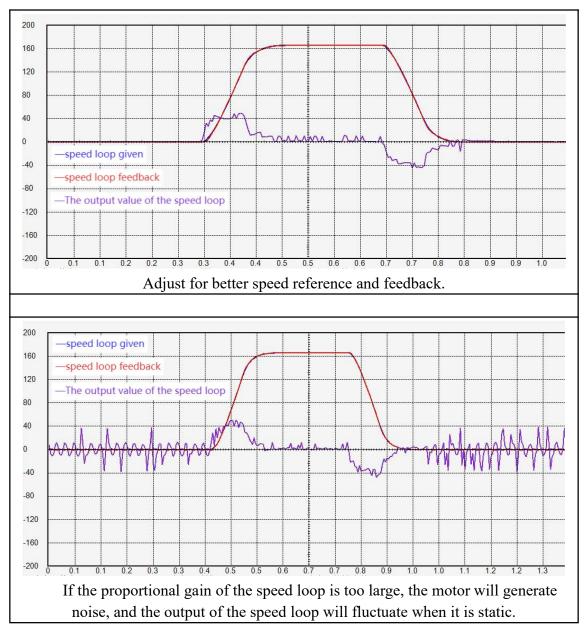


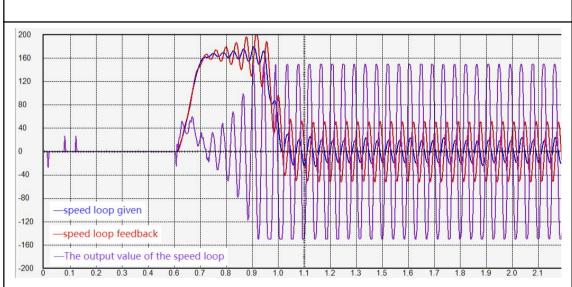
The larger the current command amplitude, the larger the output torque. Specifically, the greater the forward current command (more positive), the greater the output forward torque; the greater the reverse current command (more negative), the greater the output reverse torque. When the current command is close to 0, the output torque is also close to zero. As shown in the figure below, the motor speed is 0 at the beginning, and the motor torque is close to 0. After that, the motor torque increases in the positive direction, and the motor starts to accelerate. The greater the motor forward torque, the greater the motor acceleration, and then the forward torque is slow. Slowly reduce to zero, the motor speed remains constant and does not increase. After that, the motor torque gradually decreases to negative, and the motor begins to decelerate. The greater the negative motor torque, the greater the motor deceleration. The final motor torque is 0, and the motor speed remains unchanged.

11.2.4 Speed loop understanding and tuning

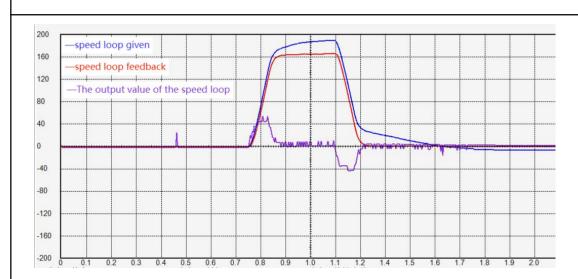
The input of the speed loop is the given speed and the feedback actual speed, and the output is the torque command. The goal is to make the feedback actual speed track the given speed by adjusting the torque. The torque command consists of two parts, one is feedforward and the other is speed loop PI output. The torque feedforward is obtained by multiplying the acceleration of the given speed by a torque feedforward coefficient, and the speed loop PI can quickly eliminate the error between the given speed and the actual speed.

There is a filter after the torque command output, usually low-pass filter (P07.12=0). The function of low-pass filtering is to reduce torque jump and reduce motor noise. Generally speaking, the larger the torque filter time constant P07.13, the smaller the motor noise, but it may cause low-frequency fluctuations in the torque. Generally speaking, the larger the load inertia is, the larger the required torque filter time constant P07.13, and the larger the speed loop proportional gain.


Torque feedforward coefficient P07.10 and torque filter time constant P07.13 can be obtained through inertia self-learning, and generally do not need to be adjusted. It is mainly necessary to adjust the proportional gain and integral gain of the speed loop PI.


The adjustment principles of speed loop proportional gain P07.03 and integral gain P07.04 are:

1. The speed loop proportional gain is generally more than 10 times greater than


the integral gain, and the speed loop proportional gain is adjusted between 1000-10000, and the speed loop integral gain is generally adjusted between 20-500. If the integral gain is too large relative to the proportional gain, it is easy to cause low-frequency fluctuation of the rotational speed. The specific performance is that the speed has been reversed and cannot converge.

- 2. When the inertia is large, the proportional gain of the speed loop needs to be increased.
- 3. When the proportional gain of the speed loop is too large, abnormal noise will occur during the static process of the motor.
- 4. When the integral gain of the speed loop is too large, the motor speed is always forward and reverse, and it cannot converge.
- 5. The speed loop proportional gain and integral gain are too small, the given speed and the feedback speed cannot be coincident, the motor rigidity is very small, especially soft.

The integral gain of the speed loop is too large, the motor cannot stop all the time, and the forward and reverse rotations shake.

The speed loop gain is too small, the speed loop reference and feedback cannot be coincident, and the motor has no rigidity and is particularly soft.

11.2.5 Position loop understanding and adjustment

The position loop gain is generally set to 100-500. If the position loop proportional gain is too large, it is easy to cause the motor to shake. If it is too small, the convergence rate of the position error is slow.

Chapter 12 Introduction to CANopen Protocol

12.1 Introduction to the CAN physical layer

The CAN physical layer uses the potential difference of the CAN_H and CAN_L signals to distinguish the logic 0 and logic 1 of the digital signal. When the input differential voltage of CAN-H and CAN-L is 2V (minimum not less than 0.9V), it is considered as a dominant potential, representing logic 0. When the input differential voltage of CAN-H and CAN-L is 0V (the maximum is not more than 0.5V), it is regarded as a recessive potential, representing logic 1. The priority of dominant potential transmission is higher than that of recessive potential, that is, the priority of logic 0 is higher than that of logic 1. That is to say, when two nodes send logic 0 and logic 1 to the bus at the same time, what is actually transmitted on the bus is logic 0.

The standard CAN data frame is shown in the figure below.

Bit len: 1 11	1 1 1	4	0-64	15	1	1	1	7	3	
S CAN ID	R I r T D e R E s	len	DATA	CRC	c r c s	A C K	A C K s	EOF	Fs	

The standard CAN remote frame is shown in the following figure.

Bit len: 1	11	1	1	1	4	15	1	1	1	7	3	
S O F	CAN ID	R T R	I D E	r e s	len	CRC	c r c s	A C K	A C K s	EOF	Fs	

Among them, SOF is the start of frame. CANID is the identification code of the frame, and the smaller the value, the higher the priority of sending. RTR is the Remote Frame Identification. IDE is Extended Frame Identifier. res is a reserved bit. len is the number of bytes of data bits. DATA is the data, the maximum is 8 bytes. CRC is a CRC check code. crcs is the CRC delimiter bits. ACK is the other device's response bit. ACKs are response separator bits. EOF is end of frame. Fs is the frame separator. Therefore, the bit length of a standard data frame is "47+data byte bits". A standard remote frame has a bit length of 47.

What needs to be focused on is CANID, data DATA, and RTR.

12.2 Object Dictionary

The object dictionary is the most important part of the device specification. It is an ordered set of parameters and variables that contain all the parameters of the device description and the state of the device's network. A set of objects that can be accessed over a network in an ordered, predefined manner. The CANopen protocol uses an object dictionary

with a 16-bit index and an 8-bit sub-index. The structure of the object dictionary is shown in the following table.

indexes	Object Description
0x0000	reserve
0x0001~0x009F	Various data types (standard data types such as Boolean, Integer16)
0x00A0~0x0FFF	reserve
0x1000~0x1FFF	Objects specified by CiA301 communication sub-protocol
0x2000~0x5ffff	Objects specified by the device manufacturer
0x6000~0x9ffff	Objects specified by CiA402 communication sub-protocol

The mapping relationship between the VEC servo driver function code and the object dictionary is as follows:

Object dictionary index = 0x2000 + function code parameter group number object dictionary subindex = hexadecimal of the offset within the function code group

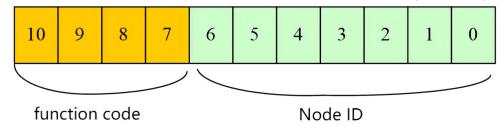
For example, function code P02.10 corresponds to the object of the object dictionary as 0x2002-0A. The object of the object dictionary corresponding to function code P10.11 is 0x200A-0B.

There are three types of objects in the object dictionary. The first type is a variable type object. The variable type object contains a variable and has no sub-index. The types of variables include unsigned 8-bit, signed 8-bit, unsigned 16-bit, signed 16-bit, unsigned 32-bit, signed 32-bit. The second type is an array object. The array object contains an array. All numbers in the array have the same data type, which can be an unsigned 16-bit array or a signed 32-bit array, etc. An array-type object contains multiple sub-indexes, the first of which is the size of the array. For example, for an array-type object with an array length of 2, the value of the first sub-index is fixed to 2, followed by two sub-indexes, which store the two values in the array respectively. The third type is a structural object. The structural object contains a structure, and the data types in the structure are inconsistent. Structure objects contain multiple sub-indexes, where the first sub-index is the number of variables in the structure. The following sub-indexes store all the variables in the structure respectively.

12.3 Introduction to CiA301 Protocol

CiA301 protocol includes network management sub-protocol (NMT), service data sub-protocol (SDO), process data sub-protocol (PDO), synchronization sub-protocol (SYNC), error handling sub-protocol (EMCY). Each sub-protocol has a corresponding communication object to implement.

Network management sub-protocols are implemented by network management objects. The network management object NMT includes a Boot-up message object, an error control object and an NMT management object. The network management sub-protocol is used to manage and monitor each node in the network, and mainly realizes three functions: node state control, error control, and Boot-up message. NMT is based on the master-slave model, that is to say, the master station sends control commands to the slave stations, and the slave


stations perform corresponding actions after receiving the commands.

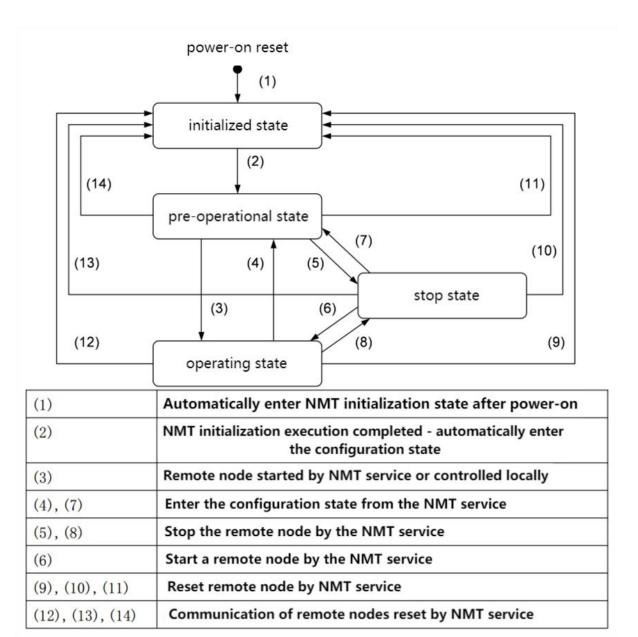
Service Data Objects (SDOs) include receive SDOs (R-SDOs) and transmit SDOs (T-SDOs). SDO Through the use of indexes and sub-indexes, SDO enables clients to access items in the device object dictionary. SDO is implemented through the CMS object of the multivariate field in the CAL, allowing the transmission of data of any length, and splitting it into several packets when the data exceeds 4 bytes. The SDO protocol is an acknowledgement service type that generates an acknowledgement for each message. SDO request and response messages always contain 8 bytes. SDO is based on the client-server model, that is, the client sends data access requests to the server, and the server replies to the request. Generally speaking, the master station acts as a client and the servo acts as a server. The master station reads data from the servo as SDO upload, and the master station writes data to the servo as SDO download.

Process data object (PDO), PDO includes receive PDO (RPDO) and transmit PDO (TPDO). PDO is used to transmit real-time data from a creator to one or more recipients. Data transfers are limited to 1 to 8 bytes. Each CANopen device contains 8 default PDO channels, 4 transmit PDO channels and 4 receive PDO channels. The PDO includes two transmission modes, synchronous and asynchronous, which are determined by the communication parameters corresponding to the PDO. The content of the PDO message is predefined and determined by the mapping parameters corresponding to the PDO. PDO transmission is based on the producer-consumer model, that is, the device configured with TPDO produces data and continuously sends data to the bus, and the device configured as RPDO acts as a consumer and receives the data it needs from the bus.

The synchronization object is a message periodically broadcast to the CAN bus by the CANopen master station to realize the basic network clock signal. Each device can decide whether to use this event to communicate with other network devices synchronously according to its own configuration.

Each communication object can be distinguished by CANID. CANID contains 11 bits, the first 4 bits are function control bits, and the last 7 bits are node ID (NODE-ID).

All CANID and their corresponding communication objects are shown in the following table.


communication object	function code	Node address	COB-ID	the corresponding object index	
network management	0000Ь	0	0h	-	
Sync object	0001b	0	80h	1005h, 1006h	
urgent message object	0001b	1~127	80h + Node ID	1014h	
TPDO1	0011b	1~127	180h + Node ID	1800h	
RPDO1	0100b	1~127	200h + Node ID	1400h	
TPDO2	0101b	1~127	280h + Node ID	1801h	
RPDO2	0110b	1~127	300h + Node ID	1401h	
TPDO3	0111b	1~127	380h + Node ID	1802h	
RPDO3	1000b	1~127	400h + Node ID	1402h	
TPDO4	1001b	1~127	480h + Node ID	1803h	
RPDO4	1010b	1~127	500h + Node ID	1403h	
T_SDO	1011b	1~127	580h + Node ID	1200h	
R_SDO	1100b	1~127	600h + Node ID	1200h	
network management error control	1110b	1~127	700h + Node ID	1016h, 1017h	

12.4 NMT sub-protocol

12.4.1 node control protocol

NMT objects include node control objects, error control objects and bootup objects. The node control object is used to control the start, stop, reset, etc. of the node. The error control object is used to monitor the status of the node. The Bootup object is a startup frame that the CANopen device must send to the bus as soon as it starts up.

The node control protocol of NMT is based on the master-slave model, that is to say, the master station sends a node state switching command to the slave station, and the slave station performs state switching after receiving the command. The state transition of the slave station must be operated according to the following state diagram.

As can be seen from the figure, when the slave station starts, it first enters the initialization state. After the initialization is completed, it enters the pre-operational state. At this time, the NMT master station sends the SDO command to configure the slave station. After the configuration is completed, the master station sends the start remote node command to the slave station, and the slave station enters the operation state and starts the transmission of PDO.

The format of the CANopen data frame for network management is as follows.

CANID	DTD	DATA				
CANID	RTR	byte 0	byte 1			
0x000	0	NMT control code	NodeID			

The corresponding relationship of NMT control codes is as follows.

NMT control code	Corresponding state switch	Description
0x01	(3) (6)	start remote node command
0x02	(5) (8)	stop remote node command

0x80	(2) (4) (7)	Enter Pre-Operational State
		command
0x81	(9) (10) (11)	reset node command
0x82	(12) (13) (14)	reset communication command

After the device is powered on, it will automatically enter the initialization state, including initialization node, reset node and reset communication. The initialization loads the parameters of each module of the node, while the reset node restores the object dictionary manufacturer definition area and sub-protocol area to the last saved value, and the reset communication restores the communication parameters in the object dictionary to the last saved value. Then the device sends Boot-up and automatically enters the pre-operation state, which is the main configuration node state. After completing the configuration, the node needs the NMT host to send NMT packets to enter the operation state. The operating state is the state when CANopen is working normally, and each module should work normally. When the NMT host sends a stop node message, the device enters the stop state. When in the stop state, only the NMT module works normally in CANopen communication. The CANopen services supported in various NMT states are shown in the table below.

Service	pre-operational state	operating state	stop state
PDO	not support	support	not support
SDO	support	support	not support
SYNC	support	support	not support
EMCY	support	support	not support
NMT	support	support	support
error control	support	support	support

12.4.2 NMT error control

NMT error control is mainly used to detect whether the device in the network is online and the state of the device, including node life protection and heartburn.

Note that lifetime protection and heartbeat are not allowed at the same time. The time of node life protection and heartbeat should not be set too short, so as not to increase the network load!

12.4.2.1 node life protection

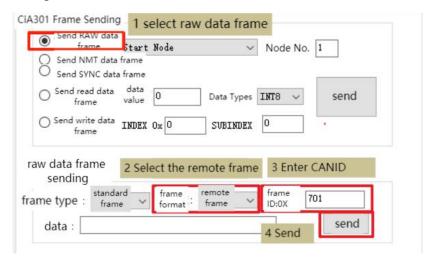
Node life protection is that the NMT master periodically queries the status of NMT slaves by sending remote frames; node life protection follows the master-slave model, that is, the master sends a query status command to the slave, and the slave must do it within a specified time. A response is given, otherwise the slave is considered to be offline. The slave returns a data frame with a status flag. Objects related to node lifetime protection include protection time 100Ch and lifetime factor 100Dh. The value of 100Ch is the node protection remote frame interval under normal circumstances, and the unit is ms. The product of 100Ch and 100Dh determines the latest time for host query. Under normal circumstances, node protection is achievable. When both nodes 100Ch and 100Dh are non-zero and a node

protection request frame is received, lifetime protection is activated.

The NMT master node sends the remote frame as shown in the following table.

CANID	RTR
0x700+NodeID	1

The data frame returned by NMT from the node is shown in the following figure.


CANID	RTR	data byte 0
0x700+NodeID	0	state

The states in which are defined as follows.

Bit7: Alternately set to 1 and set to 0

Bit6-Bit0: 4-stop state; 5-operating state; 127-pre-operating state

The operation steps are as follows:

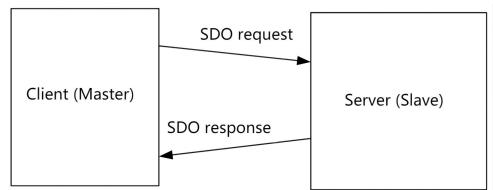
Click "Send" several times in a row, and then check the received frame, you can find that "toggle" is alternately set to 1 and 0.

12.4.2.2 heartbeat

Heartbeat mode uses a producer-consumer model. That is to say, the producer continuously sends heartbeat frames to the bus, and the consumer constantly monitors the received heartbeat. If the heartbeat packet of a producer cannot be monitored, the producer is considered to be offline. The CANopen device can send heartbeat messages according to the period set by the producer heartbeat interval object 1017h, and the unit is ms. The network always has a node with the function of consuming heartbeat, and monitors the producer according to the consumer time set by the object 1016h. Once the producer heartbeat of the corresponding node is not received within the consumer heartbeat time range, the node is

considered to be faulty. After configuring the producer heartbeat interval of 1017h, the node heartbeat function is activated and starts to generate heartbeat packets. After configuring a valid sub-index of the consumer's heartbeat 1016h, monitoring will start upon receiving a frame of heartbeat from the corresponding node.

The heartbeat frame format is as shown below.


CANID	RTR	data byte 0
0x700+NodeID	0	state

12.5 SDO sub-protocol

Service Data Objects (SDOs) include receive SDOs (R-SDOs) and transmit SDOs (T-SDOs). SDO enables clients to access items in the device object dictionary through the use of indexes and sub-indexes. The SDO protocol is an acknowledgement service type that generates a reply for each message. SDO request and response messages always contain 8 bytes. SDO is based on the client-server model, that is, the client sends data access requests to the server, and the server replies to the request. Generally speaking, the master station acts as a client and the servo acts as a server. The master station reads data to the servo is called SDO upload, and the master station writes data to the servo is called SDO download.

12.5.1 SDO transfer process

An SDO transfer process consists of two parts. First, the SDO client sends an SDO request frame to the SDO server. The request frame contains the NodeID, read and write parameters, index and sub-index to be read and written. The server receives the SDO request, performs the corresponding operation, and then responds to the client.

SDO transfers include accelerated transfers and segmented transfers. When the read and write data bytes are less than or equal to 4 bytes, accelerated transmission is used. When the data bytes to be read and written are larger than 4 bytes, segmented transmission is used. Under normal circumstances, SDO accelerated transmission is used.

12.5.2 Data frame format for SDO accelerated transmission

SDO accelerated transmission is divided into 4 frame types. They are SDO request accelerated write, SDO response accelerated write, SDO request accelerated read, SDO

response accelerated read.

12.5.2.1 SDO request accelerated write

The SDO request to speed up writing is divided into four types: write 1 byte, write 2 bytes, write 3 bytes, and write 4 bytes. Their data format is as follows.

	CANID	DATA0	DATA1-DATA3	DATA4	DATA5	DATA6	DATA7
write 4 bytes	0x600+Nodeid	0x23	index and sub-index	data	data	data	data
write 3 bytes	0x600+Nodeid	0x27	index and sub-index	data	data	data	0
write 2 bytes	0x600+Nodeid	0x2B	index and sub-index	data	data	0	0
write 1 bytes	0x600+Nodeid	0x2F	index and sub-index	data	0	0	0

12.5.2.2 SDO responds to accelerated writes

SDO responds to accelerated writing, and is divided into two types. One is that the writing is successful and returns to normal. One is that the write fails and an exception is returned.

		CANID	DATA0	DATA1-DATA3	DATA4	DATA5	DATA6	DATA7
wri	te	0x580+Nodeid	0x60	index and	0	0	0	0
nor	mal	0X380+Nouclu	UXUU	sub-index	U		U	U
wri	te	0x580+Nodeid	0x80	index and	termination code			
nor	mal	0x380+Nodeld	UXOU	sub-index	termination code			

12.5.2.3 SDO request accelerated read

The frame format of SDO request accelerated read is as follows.

CANID	DATA0	DATA1-DATA3	DATA4	DATA5	DATA6	DATA7
0x600+Nodeid	0x40	index and	0	0	0	0
		sub-index				

12.5.2.4 SDO response accelerated read

The frame format of SDO response accelerated read is as follows.

	CANID	DATA0	DATA1-DATA3	DATA4	DATA5	DATA6	DATA7
Response 4 bytes	0x580+Nodeid	0x43	index and	data	data	data	data
of data			sub-index				
Response 3 bytes	0x580+Nodeid	0x47	index and	data	data	data	0
of data			sub-index				
Response 2 bytes	0x580+Nodeid	0x4B	index and	data	data	0	0
of data			sub-index				
Response 1 bytes	0x580+Nodeid	0x4F	index and	data	0	0	0
of data			sub-index				
read exception	0x580+Nodeid	0x80	index and	termination code			

sub-index sub-index

12.5.3 Example of SDO frame format

For example, using an SDO message, the value 0x3FE will be written to the object with index 0x1801 and subindex 3 in the object dictionary with node number 2. The contents of the communication frame are as follows.

Maste	Master (client) to slave (server)								
CA	ANID	data bytes							
		0	1	2	3	4	5	6-7	
(602	2B	01	18	03	FE	03	0	
Slave (Slave (Server) to Master (Client)								
5	582	60	01	18	03	0	0	0	

For another example, the SDO message is used to read out the object whose index is 0x1801 and the sub-index is 3 in the object dictionary whose node number is 2. The contents of the communication frame are as follows.

Master (client) to slave (server)

CANID		data bytes					
	0	1	2	3	4	5	6-7
602	40	01	18	03		-	-
Slave (Server) to Master (Client)							
582	4B	01	18	03	FE	03	-

12.6 PDO Sub-Protocol

12.6.1 PDO transfer process

Process data object (PDO), PDO includes receive PDO (RPDO) and transmit PDO (TPDO). PDO is used to transmit real-time data from one producer to one or more consumers. Data transfers are limited to 1 to 8 bytes. Each CANopen device contains 8 default PDO channels, 4 TPDO channels and 4 RPDO channels. The PDO includes two transmission modes, synchronous and asynchronous, which are determined by the communication parameters corresponding to the PDO. The content of the PDO message is predefined and determined by the mapping parameter corresponding to the PDO. PDO transmission is based on the producer-consumer model, that is, the device configured with TPDO produces data and continuously sends data to the bus, and the device configured as RPDO acts as a consumer and receives the data it needs from the bus.

12.6.2 PDO related parameters

Each PDO has corresponding communication parameters and mapping parameters. The communication parameters define the transmission mode of the PDO, whether it is enabled, and the transmission interval. The mapping parameter defines what data the data byte of the PDO contains and the bit length of each data.

VEC bus type servo has 4 RPDOs and 4 TPDOs, each PDO and its corresponding communication parameters and mapping parameters are shown in the following table.

1	17 - 21	The object where the	The object where the
Name	CANID	communication	mapping parameter is
		parameters are located	located
RPDO1	200h + Node_ID	1400h	1600h
RPDO2	300h + Node_ID	1401h	1601h
RPDO3	400h + Node_ID	1402h	1602h
RPDO4	500h + Node_ID	1403h	1603h
TPDO1	180h + Node_ID	1800h	1A00h
TPDO2	280h + Node_ID	1801h	1A01h
TPDO3	380h + Node_ID	1802h	1A02h
TPDO4	480h + Node ID	1803h	1A03h

Communication parameters 1400h~1403h are defined as follows.

sub index	meaning							
Subindex=0	The number of sub-indexes, at least 2, or 3 if suppression time is							
	suppo	supported. The value is 5 if event timers are supported.						
Subindex=1								
	31	30~29	28	27~11	10~0			
	disable bit	reserve	0	0	CANID			
	Disable bit: Wh	nen set to 1, the	use of this RP	DO is disabled	ļ;			
	CANID: CAN	IID of the RPD	Ю;					
	When	n the index is 1	400h, CANID=	=200h+Nodeid	•			
	When	n the index is 1	401h, CANID=	=300h+Nodeid	•			
	When	n the index is 1	402h, CANID=	=400h+Nodeid	;			
	When	n the index is 1	403h, CANID=	=500h+Nodeid	;			
Subindex=2	Defines the rec	eiving properti	es of RPDO.					
		value	descrip	otion				
		00	Synch	ronous reception	on			
		F0	Synch	ronous reception	on			
	FD reserve							
Subindex=3	Defines the suppression time of RPDO							
Subindex=4			reserve					
Subindex=5			event timer					

Communication parameters 1800h~1803h are defined as follows.

sub index	meaning								
Subindex=0	T.	The number of sub-indexes, at least 2, or 3 if suppression time is							
		supported. The value is 5 if event timers are supported.							
Subindex=1									
		31	30~29	28	27~11	10~0			
	disa	ble bit	reserve	0	0	CANID			
	Disabl	e bit: Wh	nen set to 1, the	use of this TP	DO is disabled	•			
	CANII	D: CAN	ID of the TPD	O;					
		When	the index is 1	800h, CANID	=180h+Nodeid	•			
		When	the index is 1	801h, CANID=	=280h+Nodeid	;			
		When	the index is 1	802h, CANID=	=380h+Nodeid	;			
		When	the index is 1	803h, CANID=	=480h+Nodeid	;			
Subindex=2	Define	s the nat	ure of the trans	smission of TPI	DO.				
		value	description						
		00	Sync						
		01	Sync, sent ev	ery 1 SYNC					
		02	Sync, sent ev	ery 2 SYNC					
		N	Sync, sent ev	ery N SYNC					
	FD reserve								
Subindex=3	Defines the suppression time of TPDO								
Subindex=4				reserve					
Subindex=5				event timer					

The mapping parameters 1600h~1603h, 1A00h~1A03h are defined as follows.

sub index	meaning
Subindex=0	The total number of mapped
	variables for this PDO
Subindex=1	the mapped value of the 1st
	variable
Subindex=2	the mapped value of the 2st
	variable
Subindex=3	the mapped value of the 3st
	variable
Subindex=n	the mapped value of the nth
	variable

The "mapped value of the nth variable" is a variable of 32bit, which is composed as follows.

31~16	15~8	7-0
the index of the mapped variable	subindex of the mapped	bit length of the
	variable	mapped variable

It should be noted that when modifying the mapping value of PDO, the following sequence must be followed.

- 1 First set the prohibition bit of the corresponding communication parameter to 1
- 2 Then set other communication parameters
- 3 Then set the subindex of the mapping parameter to 0
- 4) Then fill in the mapping parameters
- 5 Then write the subindex of the mapping parameter to the total number of mapping variables
 - 6 Finally set the disable bit of the communication parameter to 0.

12.6.3 TPDO frame format

CANID	RTR	DATA	
CANID set in the		data	
communication parameter	0	data	

12.6.4 RPDO frame format

CANID	RTR	DATA
CANID of the TPDO that	0	data
needs to be received	0	data

12.6.5 PDO configuration example

Suppose a master station wants to control the speed of 3 slave stations. 1 master station needs to send control word (6040h-00) and speed command (60FFh-00) to 3 slave stations in real time, and 3 slave stations need to return their respective status words (6041h-00), among which control word, speed command, the status word is 16 bits.

Assume that the NodeID of the master station is 127, and the NodeIDs of the other three slave stations are 1, 2, and 3. First configure the sending TPDO and RPDO of the three slave stations, and then configure the TPDO and RPDO of the master station. The configuration result is as follows. It should be noted that the CANIDs of TPDO and RPDO are for slave stations, and the CANIDs of TPDO and RPDO of the master station are opposite. And the CANID of the RPDO to be received must be the same as the CANID of the sent TPDO.

NodeID=127	
TPDO1: CANID=201h	RPDO1: CANID=181h
map variable values: 60400010h and 60FF0010h	map variable values: 60410010h
TPDO2: CANID=202h	RPDO2: CANID=182h
map variable values: 60400010h and 60FF0010h	map variable values: 60410010h
TPDO3: CANID=203h	RPDO3: CANID=183h
map variable values: 60400010h and 60FF0010h	map variable values: 60410010h

NodeID=1

TPDO1: CANID=181h

map variable values: 60410010

RPDO1: CANID=201h

map variable values: 60400010h and 60FF0010h

NodeID=2

TPDO1: CANID=182h

map variable values: 60410010

RPDO1: CANID=202h
map variable values: 60400010h and 60FF0010h

NodeID=3

TPDO1: CANID=183h

map variable values: 60410010

map variable values: 60400010h and 60FF0010h

RPDO1: CANID=203h

12.6.6 Synchronous SYNC Sub-Protocol

Synchronization (SYNC) is a special mechanism that controls the coordination and synchronization between the sending and receiving of multiple nodes, and is mainly used for the synchronous transmission of PDO.

When the synchronization protocol is used, the master station needs to configure the slave station as follows.

- (1) Write 0x80 in 1005h to disable the sync protocol.
- 2) Write the synchronization cycle in 1006h, the unit is 1us.
- ③ Write 0x40000080 in 1005h to initiate synchronization.

The format of the synchronization frame is as follows when synchronization is started.

CANID	RTR
80h	0

12.7 Objects related to CiA301 protocol

12.7.1 Object 1000h: Device Type

indexes	1000h
name	equipment type
object type	Variables
data type	unsigned 32 bit
PDO mapping	mappable
read and write properties	readable and writable
Defaults	0
set range	-2147483647~2147483647
Detailed description	equipment type

12.7.2 Object 1001h: Error register

indexes	1001h
name	error register
object type	Variables
data type	unsigned 8 bits

PDO mapping	mappable
read and write	readable and writable
properties	
Defaults	0
set range	0~255
Detailed	
description	error register

12.7.3 Object 1005h: COB-ID synchronization message

indexes	1005h
name	COB-ID synchronization message
object type	Variables
data type	unsigned 32 bit
PDO mapping	mappable
read and write	readable and writable
properties	readable and writable
Defaults	80h
set range	0~4294967295
Detailed	COD ID symphyonization massage
description	COB-ID synchronization message

12.7.4 Object 1006h: Communication cycle

indexes	1006h
name	communication cycle
object type	Variables
data type	unsigned 32 bit
PDO mapping	mappable
read and write	readable and writable
properties	readable and writable
Defaults	00
set range	0~4294967295
	The object defines the SYNC interval. Unit: us. If set to 0,
	SYNC is disabled. With this value non-zero and the overflow
Detailed	value of the sync counter being greater than zero, the first
description	SYNC message is initiated when the counter value is reset to
	one. SYNC will start within one communication cycle after
	the value is updated

12.7.5 Object 1008h: Manufacturer Device Name

indexes	1008h
---------	-------

name	Manufacturer device name
object type	character array
data type	character
PDO mapping	not mappable
read and write	rood only
properties	read-only
Defaults	"VECServo"
set range	
Detailed	Manufacturer device name
description	ivianuiacturer device name

12.7.6 Object 1009h: Manufacturer's hardware version

indexes	1009h
name	Manufacturer's hardware version
object type	character array
data type	character
PDO mapping	not mappable
read and write	wood only
properties	read only
Defaults	"1.1.1"
set range	
Detailed	Manufacturer's hardware version
description	ivianulaciulei s nardware version

12.7.7 Object 100Ah: Manufacturer's software version

indexes	100Ah
name	Manufacturer's software version
object type	character array
data type	character
PDO mapping	not mappable
read and write	mood only
properties	read only
Defaults	"1.1.1"
set range	
Detailed	Manufacturer's software version
description	ivianulacturer's software version

12.7.8 Object 100Ch: Guardianship Period

indexes 100Ch	
---------------	--

name	monitoring cycle
object type	Variables
data type	unsigned 16 bits
PDO mapping	not mappable
read and write	Readable and writable
properties	
Defaults	0
set range	0~65535
	The index objects 100Ch and 100Dh are life cycle factors, and
Detailed	the former configures the guardianship cycle. Its product
description	gives the lifetime of the Survival Guardian protocol. The unit
	is ms. A value of 0000h disables survival monitoring.

12.7.9 Object 100Dh: Life cycle Factor

The product of the lifetime factor and the monitoring period gives the lifetime of the survival monitoring co-instrument

indexes	100Dh
name	life cycle factor
object type	Variables
data type	unsigned 8 bits
PDO mapping	not mappable
read and write	Readable and writable
properties	Readable and writable
Defaults	0
set range	0~255
	The index objects 100Ch and 100Dh are life cycle factors, and
Detailed description	the former configures the guardianship cycle. The product of
	this gives the lifetime of the Survival Guardian protocol. The
	unit is ms. A value of 0000h disables survival monitoring. A
	value of 00h should disable survival monitoring.

12.7.10 Object 1014h: EMCY COB-ID

indexes	1014h
name	CANID of urgent frame
object type	Variables
data type	unsigned 32 bit
PDO mapping	mappable
read and write properties	Readable and writable
Defaults	80h

set range	0~4294967295
Detailed	COD ID 1 iti
description	COB-ID synchronization message

12.7.11 Object 1017h: Producer Heartbeat Period

indexes	1017h
name	Producer heartbeat cycle
object type	Variables
data type	unsigned 16 bits
PDO mapping	not mappable
read and write	Readable and writable
properties	
Defaults	0
set range	0~65535
detail	This object configures the heartbeat period. The unit is ms.
description	Setting 0 will disable the producer heartbeat.

12.7.12 Object 1200h: SDO server parameters

indexes	1200h
name	SDO server parameters
object type	array object
data type	unsigned 32 bit
PDO mapping	not mappable
read and write	
properties	read-only

index_sub-index	1200h_00
name	1200h Number of valid sub-indexes
data type	unsigned 32 bit
PDO mapping	not mappable
read and write properties	read-only
Defaults	2

index_sub-index	1200h_01
name	CANID of client-to-server SDO frame
data type	unsigned 32 bit
PDO mapping	not mappable
read and write	read-only
properties	

Defaults	601h
----------	------

index_sub-index	1200h_02
name	CANID of SDO frame from server to client
data type	unsigned 32 bit
PDO mapping	not mappable
read and write properties	read-only
Defaults	581h

12.7.13 Object 1400h~1403h: Communication parameters of RPDO1~RPDO4

indexes	1400h
name	Communication parameters of RPDO1
object type	array object
data type	unsigned 32 bit
PDO mapping	not mappable
read and write	Readable and writable
properties	readable and writable

index sub-index	1400h 00
name	1400h Number of valid sub-indexes, at least 2, or 3 if
	suppression time is supported. The value is 5 if event timers
	are supported.
data type	unsigned 32 bit
PDO mapping	not mappable
read and write	mad sulv
properties	read-only
Defaults	2

index_sub-index	1400h_01				
name		Contai	ns the	CANID of RPD	OO1
data type			unsi	gned 32 bit	
PDO mapping			not	mappable	
read and write		R	eadab	le and writable	
properties					
Defaults	10000000h				
Detailed					
description	31 30~29 28 27~11 10~0				
	disable	reserve	0	0	CANID
	bit	1CSCI VC		<u> </u>	CAND

Disable bit: When set to 1, the use of this RPDO is disabled;
CANID: CANID of the RPDO;
When the index is 1400h, CANID=200h+Nodeid;
When the index is 1401h, CANID=300h+Nodeid;
When the index is 1402h, CANID=400h+Nodeid;
When the index is 1403h, CANID=500h+Nodeid;

index_sub-index	1400h_02			
name	Defines the receiving properties of the RPDO			
data type			unsigned 8 bits	
PDO mapping			not mappable	
read and write			Readable and writable	
properties				
Defaults	FFh			
Detailed	Defines the receiving properties of RPDO.			
description		value description		
		00	Synchronous reception	
		F0	Synchronous reception	
		FD	reserve	

index_sub-index	1400h_03		
name	Defines the suppression time of RPDO		
data type	unsigned 16 bits		
PDO mapping	not mappable		
read and write properties	Readable and writable		
Defaults	0		
Detailed description	The unit of this value is 100us. A value of 0 means disabled.		

index_sub-index	1400h_04
name	reserve
data type	unsigned 8 bits
PDO mapping	not mappable
read and write properties	Readable and writable
Defaults	0

index_sub-index	1400h_05		
name	Defines the event timer for RPDO		
data type	unsigned 16 bits		
PDO mapping	not mappable		
read and write	Readable and writable		
properties	ixeauable allu Willable		
Defaults	0		
Detailed	Contains event timers. The unit is ms. A value of 0 will		
description	disable the event timer		

12.7.14 Object 1800h~1803h: Communication parameters of TPDO1~TPDO4

indexes	1800h
name	Communication parameters of TPDO1
object type	array object
data type	unsigned 32 bit
PDO mapping	not mappable
read and write properties	Readable and writable

index_sub-index	1800h_00
name	1800h Number of valid sub-indexes, at least 2, or 3 if
	suppression time is supported. The value is 5 if event timers
	are supported.
data type	unsigned 32 bit
PDO mapping	not mappable
read and write	
properties	read-only
Defaults	2

index_sub-index	1800h_01					
name		Contains the CANID of TPDO1				
data type			unsi	gned 32 bit		
PDO mapping			not	mappable		
read and write properties	Readable and writable					
Defaults	10000000h					
Detailed	31	30~29	28	27~11	10~0	
description	inhibit	reserve	0	0	CANID	
	bit					

Inhibit bit: When set to 1, the use of this TPDO is disabled;
CANID: CANID of the TPDO;
When the index is 1800h, CANID=180h+Nodeid;
When the index is 1801h, CANID=280h+Nodeid;
When the index is 1802h, CANID=380h+Nodeid;
When the index is 1803h, CANID=480h+Nodeid;

index_sub-index	1800h_02				
name		De	fines the sending nature of TPDC)	
data type			unsigned 8 bits		
PDO mapping			not mappable		
read and write			Readable and writable		
properties					
Defaults	FFh				
Detailed	Defines the nature of the transmission of TPDO.				
description	value description				
		00 Sync			
		01 Sync, sent every 1 SYNC			
		02 Sync, sent every 2 SYNC			
		N Sync, sent every n SYNC			
		FD reserve			

index_sub-index	1800h_03
name	Defines the inhibition time of TPDO1
data type	unsigned 16 bits
PDO mapping	not mappable
read and write	Readable and writable
properties	Readable and writable
Defaults	0
detailed	The unit of this value is 100us. A value of 0 means disabled.

index_sub-index	1800h_04
name	reserve
data type	unsigned 8 bits
PDO mapping	not mappable
read and write properties	Readable and writable
Defaults	0

index_sub-index	1800h_05
name	Defines the event timer for TPDO

data type	unsigned 16 bits
PDO mapping	not mappable
read and write	Readable and writable
properties	
Defaults	0
Detailed	Contains event timers. The unit is ms. A value of 0 will
description	disable the event timer

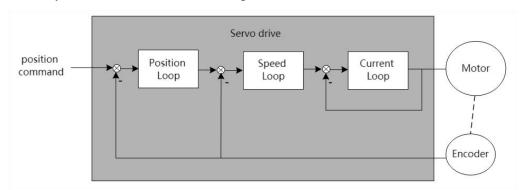
12.7.15 Object 1600h~1603h: Mapping parameters of RPDO1~RPDO4

sub index	meaning	
Subindex=0	The total number of variables in	
	the RPDO map	
Subindex=1	the mapped value of the 1st	
	variable	
Subindex=2	the mapped value of the 2st	
	variable	
Subindex=3	the mapped value of the 3st	
	variable	
Subindex=n	the mapped value of the n st	
	variable	

The "mapped value of the nth variable" is a 32-bit variable, and its composition is as follows.

31~16	15~8	7-0
the index of the mapped variable	subindex of the mapped	bit length of the
	variable	mapped variable

12.7.16 Objects 1A00h~1A03h: mapping parameters of TPDO1~TPDO4


sub index	meaning	
Subindex=0	The total number of variables in the	
	TPDO map	
Subindex=1	the mapped value of the 1st variable	
Subindex=2	the mapped value of the 2st variable	
Subindex=3	the mapped value of the 3st variable	
Subindex=n	the mapped value of the n st variable	

The "mapped value of the nth variable" is a 32-bit variable, and its composition is as follows.

31~16	15~8	7-0
the index of the mapped variable	subindex of the mapped	bit length of the

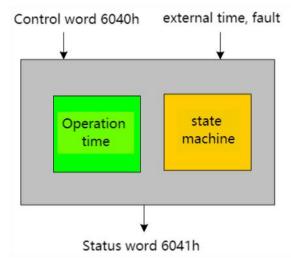
Chapter 13 CANopen Control Mode

Servo system consists of three main parts: servo driver, motor and encoder.

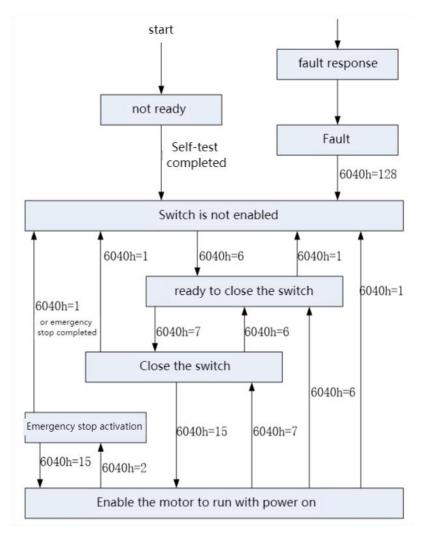
The servo driver is the control core of the servo system. By processing the input signal and feedback signal, the servo driver can control the precise position, speed and torque of the servo motor, that is, the position, speed, torque and mixed control mode. Among them, position control is the most important and most commonly used control mode of servo system.

Each control mode is briefly described as follows:

Position control refers to controlling the position of the motor through position commands. The target position of the motor is determined by the total number of position commands, and the rotation speed of the motor is determined by the frequency of the position command. The position command can be given by the combination of external pulse input, the total number of internal given position commands + speed limit. Through the internal encoder (the servo motor has its own encoder) or the second encoder (full closed-loop control), the servo drive can realize fast and precise control of the mechanical position and speed. Therefore, the position control mode is mainly used in occasions requiring positioning control, such as manipulators, placement machines, engraving, milling and engraving (pulse sequence commands), CNC machine tools, etc.


Speed control refers to controlling the speed of the machine through the speed command. Through digital, analog voltage or communication given speed command, the servo drive can achieve fast and precise control of the mechanical speed. Therefore, the speed control mode is mainly used to control the rotation speed. If you want to use the host computer to achieve speed control, you can input the output of the host computer as a speed command to the servo drive, such as an analog engraving and milling machine.

Torque control refers to controlling the output torque of the motor through the torque command. The torque command is given by digital, analog voltage or communication. The torque control mode is mainly used in devices that have strict requirements on the force of the material, such as some tension control occasions such as rewinding and unwinding devices. The torque given value should ensure that the force of the material is not affected by the change of the winding radius.


13.1 Drive state control

13.1.1 State switching mechanism

The CiA402 protocol specifies the state switching mechanism of the servo. The master station controls the status of the servo through the control word 6040h, and the servo feeds back the status information of the servo through the status word 6041h.

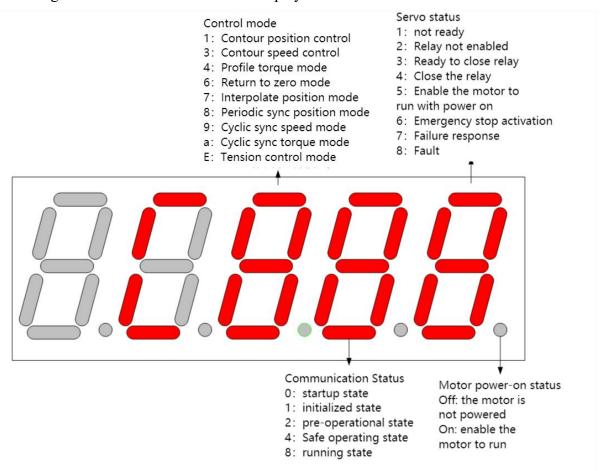
The state switching of the servo follows the following switching mechanism.

As can be seen from the figure, if you want to enable the drive, you need to write 6->7->15 to 6040h in turn.

When disabled, you need to write 7 to 6040h. If emergency stop is required in the case of enabling, you need to write 2 to 6040h, and automatically switch to the disabled switch state after the emergency stop is completed.

The above states are only running, emergency stop activated, and fault response states, and the motor is powered on.

It should be noted that, according to the CiA402 protocol, the master station can control the action of the internal switch of the servo through the control word. Considering the safety factor, the VEC servo does not open the control authority of the internal switch. The internal switch is controlled internally by the servo. In order to maintain the VEC servo's support for the CiA402 protocol, modifying 6040h only changes the internal state of the servo, and does not produce actual switching actions.


13.1.2 Status Display

In this mode, the status of the drive is displayed, and there are several statuses as follows.

Status name	Status introduction	panel display
reset state	The driver enters this state after power-on initialization or	rSt

	re-reset and restart.	
ready state	When the servo initialization is completed and the hardware	C888
	detection has no fault, it will enter the ready state	
running state	When the driver is enabled, the motor is powered on	C888.
C 14 4 4	The driver reported a fault, and the panel displays the	Er.xxx
fault state	reported fault code	

In the non-fault state of the status display, the panel can be set to display a specific variable through P02.05. The default status is displayed as follows.

13.1.3 Related objects

Control word 6040h

indexes	6040h
name	control word
Object type	Variables
Data type	unsigned 16 bits
PDO mapping	mappable
Read and write	Readable and writable
properties	Redddole and without

Defaults	0
set range	0-65535

6040h bit definition table.

15~9	8	7	6~4	3	2	1	0
reserve	pause	↑ Fault	Control mode	Enable	Emergency	Pow	switch
		reset	specific bits		stop (0 is valid)	er-on	closed

Note: If you need to enable the driver, you need to write 6->7->15 in sequence in 6040h. If you need to disable enable, write 7 directly in 6040h.

Control mode specific bits are defined as follows.

	Control mode specific ons are defined as follows.				
	control mode				
bits	Contour Position Mode	Return to zero mode	Interpolate mode	Contour speed mode	
4	↑ Trigger position execution	↑ Trigger back to zero ↓ stop returning to zero	Unused	Unused	
5	update immediately	Unused	Unused	Unused	
6	Absolute (0)/Relative (1) position mode	Unused	Unused	Unused	

Status word 6041h

01u 0041li		
6041h		
state		
Variables		
unsigned 16 bits		
mappable		
read-only		
-		
0-65535		

Status word 6041h bit definition table.

0	ready to close the switch
1	Close the switch
2	Enable the servo
3	Fault
4	voltage enable
5	emergency stop
6	Switch closure disabled
7	warning
8	-
9	1

10	goal reached			
11			-	
	Contour position mode	Return to zero mode	Interpolate mode	Contour speed mode
12	Trigger position confirmation	Return to zero complete	Interpolation mode active	zero speed
13	track down bugs	return to zero error	-	-
14	-	-	-	-
15	-	-	-	-

In different states, the values corresponding to 6041h are shown in the table below. where x represents any binary value.

Binary value of 6041h	state of representation
xxxx xxxx x0xx 0000	not ready
xxxx xxxx x1xx 0000	switch not enabled
xxxx xxxx x01x 0001	ready to close the switch
xxxx xxxx x01x 0011	Close the switch
xxxx xxxx x01x 0111	Enable the motor to run with power on
xxxx xxxx x00x 0111	Quick emergency stop effective
xxxx xxxx x0xx 1111	Fault response is valid
xxxx xxxx x0xx 1000	Fault

Emergency stop option 605Ah

indexes	605Ah
name	Emergency stop option
Object type	Variables
Data type	Signed 16-bit
PDO mapping	mappable
Read and write properties	Readable and writable
Defaults	0
set range	-32767-32767
Detailed Description	 O: After an emergency stop, free parking 1: Quick stop after emergency stop, and then enter the "disable switch state" 2: Slowly stop after emergency stop, and then enter the "disable switch state" 3: Quick stop after emergency stop, keep enabled 4: Slow stop after emergency stop, keep enabled

Failure response option 605Eh

	onse option occan
indexes	605Eh
name	Failure options
Object type	Variables
Data type	Signed 16-bit
PDO	mappable
mapping	
Read and	Readable and writable
write	
properties	
Defaults	0
set range	-32767-32767
Detailed	0: Freewheel stop after failure
	1: Quick stop after failure, then enter "fault state"
Description	2: Slow stop after failure, then enter "fault state"

Slow stop time 6050h

210 11 Stop 122		
indexes	6050h	
name	Slow deceleration time	
Object type	Variables	
Data type	unsigned 32 bit	
PDO	manushla	
mapping	mappable	
Read and		
write	Readable and writable	
properties		
Defaults	0	
set range	0~4294967295	
Detailed	Unit ms	
Description	Unit ms	

Fast parking time 6051h

indexes	6051h
name	fast parking time
Object type	Variables
Data type	unsigned 32 bit
PDO	mannahla
mapping	mappable
Read and	
write	Readable and writable
properties	

Defaults	0
set range	0~4294967295
Detailed	Unit ms
Description	Onit his

13.2 Drive Mode Control

The servo drive supports 5 control protocols specified by the CiA402 protocol. They are contour position mode, contour speed mode, contour torque mode, zero return mode, and interpolation position mode. The mode is switched by 6060h.

Control mode setting 6060h

	Control mode setting oboon	
indexes	6060h	
name	Control mode settings	
Object type	Variables	
Data type	Signed 8-bits	
PDO mapping	mappable	
Read and write properties	Readable and writable	
Defaults	7	
set range	-127~127	
Detailed Description	 reserve Contour position mode Contour speed mode Profile torque mode reserve Return to zero mode Interpolated position mode 	

Control mode display 6061h

Control mode display 600111	
indexes	6061h
name	Control mode display
Object type	Variables
Data type	Signed 8-bits
PDO mapping	mappable
Read and write properties	read-only
Defaults	7

set range	-127~127
Detailed Description	0: reserve
	1: Contour position mode
	3: Contour speed mode
	4: Profile torque mode
	5: reserve
	6: Return to zero mode
	7: Interpolated position mode

13.3 Location factors and other common objects

The position unit defined by the CiA402 protocol is the user position unit, but in fact the motor only recognizes the motor encoder unit. Therefore, the position factor 6091h is used to convert the user position unit to the motor encoder unit. 6091h is an array type object, which contains 3 sub-indexes. The 0th sub-index is fixed to 2, the first sub-index is the position factor numerator, and the second sub-index is the position factor denominator. The conversion relationship from user position unit to motor encoder unit is as follows.

Motor encoder unit (number of pulses) = user position unit $\times \frac{\text{Position factor molecule } 6091\text{h}_01}{\text{Position factor denominator } 6091\text{h}_02}$

Position factor 6091h

1 obtain ineto1 ooy111	
indexes	6091h
name	position factor
object type	array of objects
data type	unsigned 32 bit
PDO mapping	mappable
read and write	Readable and writable
properties	Readable and writable

index_sub-index	6091h_00
name	6091h Number of valid sub-indexes
data type	unsigned 32 bit
PDO mapping	not mappable
read and write properties	read-only
Defaults	2

index_sub-index	6091h_01
name	position factor molecule
data type	unsigned 32 bit

PDO mapping	mappable
read and write properties	Readable and writable
Defaults	The value set by P03.08

index_sub-index	6091h_02
name	position factor denominator
data type	unsigned 32 bit
PDO mapping	mappable
read and write	Readable and writable
properties	
Defaults	The value set by P03.10

Current actual position 6064h

indexes	6064h
name	current actual position
Object type	Variables
Data type	Signed 32-bit
PDO	mannahla
mapping	mappable
Read and	
write	read-only
properties	
Defaults	-
set range	-2147483647~2147483647
Detailed	Cymnant actual location in year location waits
Description	Current actual location, in user location units

Current actual position 6063h (encoder unit)

Cull till acti	Current actual position obosh (encoder unit)	
indexes	6063h	
name	Current actual position (encoder unit)	
Object type	Variables	
Data type	Signed 32-bit	
PDO	mannahla	
mapping	mappable	
Read and		
write	read-only	
properties		
Defaults	-	
set range	-2147483647~2147483647	
Detailed	The augment actual position the unit is (anorder unit)	
Description	The current actual position, the unit is (encoder unit)	

Real-time rotation speed 606Ch

Tear time rotation speed ooden					
indexes	606Ch				
name	real-time speed				
Object type	Variables				
Data type	Signed 32-bit				
PDO	mappable				
mapping					
Read and	read-only				
write					
properties					
Defaults	-				
set range	-2147483647~2147483647				
Detailed	current actual speed;				
Detailed	When P08.42=0, the unit is user unit/s;				
Description	When P08.42=1, the unit is 0.1RPM				

Real-time speed command 606Bh

indexes	606Bh				
name	real-time speed command				
Object type	Variables				
Data type	Signed 32-bit				
PDO	manna hla				
mapping	mappable				
Read and					
write	read-only				
properties					
Defaults	-				
set range	-2147483647~2147483647				
Detailed	Dool time smood command writ 0 1DDM				
Description	Real-time speed command, unit 0.1RPM				

Current current percentage 6078h

indexes	6078h			
name	Current current percentage			
Object type	Variables			
Data type	Signed 16-bit			
PDO	mannahla			
mapping	mappable			
Read and				
write	read-only			
properties				

Defaults	-			
set range	-32767~32767			
Detailed	The percentage of current current, the actual current is higher			
Description	than the rated current of the drive, the unit is 0.1%			

Current torque percentage 6077h

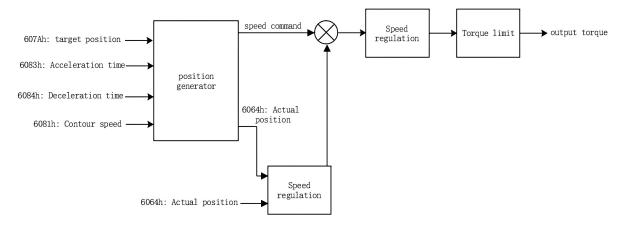
indexes	6077h				
name	Current torque percentage				
Object type	Variables				
Data type	Signed 16-bit				
PDO	monachlo				
mapping	mappable				
Read and					
write	read-only				
properties					
Defaults	-				
set range	-32767~32767				
Detailed	The current torque percentage, the actual torque is higher than				
Description	the rated torque of the drive, the unit is 0.1%				

Forward torque limit 60E0h

indexes	60E0h			
name	Forward torque limit			
Object type	Variables			
Data type	Signed 16-bit			
PDO	mannahla			
mapping	mappable			
Read and				
write	read-only			
properties				
Defaults	Value of P05.13			
set range	-32767~32767			
Detailed	Forward torque limit, unit 0.1%			
Description				

Reverse torque limit 60E1h

110 / 0100 101 (10 111111 0 0 2 1 11					
indexes	60E1h				
name	Reverse torque limit				
Object type	Variables				
Data type	Signed 16-bit				
PDO	mappable				

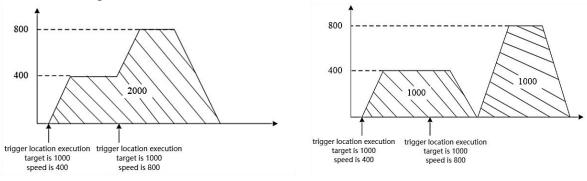

mapping			
Read and			
write	read-only		
properties			
Defaults	Value of P05.13		
set range	-32767~32767		
Detailed	Reverse torque limit, unit 0.1%		
Description			

Maximum torque 6072h

Withhird torque 007211						
indexes	6072h					
name	maximum torque					
Object type	Variables					
Data type	Signed 16-bit					
PDO	mannahla					
mapping	mappable					
Read and						
write	read-only					
properties						
Defaults	Power-on is the value of P05.13, and is limited by					
Defaults	P00.24*P00.01/P01.03					
set range	-32767~32767					
Detailed	Maximum tamana mait 0.10/					
Description	Maximum torque, unit 0.1%					

13.4 Contour position mode

The position mode is a control mode in which the final target position of the motor is the control target, and is often used to achieve high-precision positioning. The block diagram of the implementation in contour position mode is as follows. The user sets the target position, acceleration time, deceleration time, and contour speed. The servo plans the position and speed curve according to these parameters. The planning result is input into the position regulator and the speed regulator, and finally moves according to the planned curve. It should be noted that the unit of target position is "user position unit", and the unit of contour velocity is "user position unit/sec". The acceleration time is the time (ms) required to go from 0rpm to the rated speed. The deceleration time is the time (ms) required to go from the rated speed to 0. The conversion from user position units to encoder units requires conversion by the position factor 6091h.



In contour position mode, it is divided into absolute position command and relative position command, which are set by bit6 of control word 6040h. The absolute position command refers to the position of the position command relative to the origin. The relative position command refers to the size of the position command relative to the current position. Therefore, the origin return must be performed before the absolute position command is executed, otherwise a fault will be reported.

For example, it is assumed that 3 stages of absolute position commands are taken, and the initial position is the zero position. First set the target position to 1000, trigger the position to execute, and the motor will go 1000 in the forward direction. Then set the target position to -1000. After the trigger position is executed, the motor will move in the reverse direction by 2000. At this time, the absolute position of the motor is -1000. Then set the target position to 0. After the trigger position is executed, the motor will move forward 1000 degrees to reach the zero point.

For another example, assuming that the 3-stage relative position command is executed, first set the target position to 1000, the trigger position is executed, and the motor travels 1000 in the forward direction. Then set the target position to -1000. After the trigger position is executed, the motor will go 1000 in the reverse direction, and then set the target position to 3000. After the trigger position is executed, the motor will go 3000 in the forward direction.

The contour position command is also divided into immediate update mode and non-immediate update mode. The difference between the motion graphics in the two modes is shown in the figure below.

(1) Immediate update mode

(2) Non-immediate update mode

In the immediate update mode, after the trigger position is executed, regardless of whether the motor has completed the previous position, it will immediately switch to the

currently set contour position for execution, but the original position will not be discarded, that is, in the relative position mode, the final The walking position is the sum of the previous target position and this target position; in absolute position mode, the final target position is the target position set this time.

In the non-immediate update mode, after the trigger position is executed, if the previous position command has not been executed, the updated position will be executed after the previous position command is executed.

13.4.1 Contour position mode setting process

- 1) First set the mode 6060h=1
- (2) Set the target position 607Ah, the value is the user position unit
- (3) Set the contour speed to 6081h, the value is user position unit/second
- ④ Set the acceleration and deceleration time 6083h, 6084h, the value is the time (ms) required for the motor to go from 0rpm to the rated speed. The actual acceleration time is calculated according to the following formula.

Actual acceleration and deceleration time = $\frac{\text{Speed given difference}}{\text{Rated speed}} \times \text{Acceleration and deceleration time}$

- (5) Write 6->7->79->95 to the control word in sequence to execute the relative contour position.
 - 6 Read the status word 6041h to obtain the position arrival flag.

13.4.2 Contour position mode status output

position arrival output

In contour position mode, the output target arrival flag is supported, which is stored in bit10 of status word 6041h. When the real position error is less than the position window 6067h, and the duration window is 6068h, it is considered that the target has arrived, and bit10 of 6041h is set.

location tracking error

In the contour position mode, it supports the output of the position tracking error flag. When the actual position error is greater than the maximum tracking position error of 6065h, the position tracking error flag (bit13 of 6041h) is set.

13.4.3 Related objects in outline position mode

Control word 6040h

indexes	6040h		
name	Control Word		
Object type	Variables		
Data type	unsigned 16 bits		
PDO mapping	mappable		
Read and write	Readable and writable		
properties			
Defaults	0		
set range	0-65535		

6040h bit definition table.

15~9	8	7	6~4	3	2	1	0
reserve	pause	↑ Fault	operating mode	Enable	Emergency	Power	switch
		reset	specific bits		stop (0 is valid)	-on	closed

Note: If you need to enable the driver, you need to write 6->7->15 in sequence in 6040h. If you need to disable, directly write 7 in 6040h.

The operating mode specific bits are defined as follows.

	control mode					
bits	Contain position made	Return to zero	Interpolate	Contour speed		
	Contour position mode	mode	mode	mode		
		† Trigger back to				
4	† trigger position execution	zero	Unused	Unused		
4		↓ stop returning to	Onused			
		zero				
5	update immediately	Unused	Unused	Unused		
6	Absolute (0)/Relative (1) position	Unused	Unugad	Unused		
	mode	Unused	Unused	Onused		

Status word 6041h

indexes	6041h
name	state
Object type	Variables
Data type	unsigned 16 bits
PDO mapping	mappable
Read and write	
properties	read-only
Defaults	-
set range	0-65535

Status word 6041h bit definition table.

	status word over in oit definition table.				
0	ready to close the switch				
1	Close the switch				
2			Servo enable		
3			Fault		
4		V	oltage enable		
5		e	mergency stop		
6	Switch closure disabled				
7	warning				
8	-				
9	1				
10	goal reached				
11	-				
	Contour	Return to	Interpolate mode	Contour speed mode	
	Position Mode	zero mode	interpolate mode	Contour speed mode	
	Trigger	Return to	Interpolation		
12	position	zero	mode active	zero speed	
	confirmation	complete	mode active		
13	track down	return to	_	_	
13	bugs	zero error	-	-	
14	-	-	-	-	
15	15		-		

In different states, the values corresponding to 6041h are shown in the table below. where x represents an arbitrary binary value.

Binary value of 6041h	state of representation
xxxx xxxx x0xx 0000	not ready
xxxx xxxx x1xx 0000	switch not enabled
xxxx xxxx x01x 0001	switch ready
xxxx xxxx x01x 0011	switch closed
xxxx xxxx x01x 0111	Enabling the motor to run on power
xxxx xxxx x00x 0111	Quick emergency stop effective
xxxx xxxx x0xx 1111	Fault response is valid
xxxx xxxx x0xx 1000	Fault

Target position 607Ah

Target position out the		
indexes	607Ah	
name	target location	
Object type	Variables	
Data type	Signed 32-bit	
PDO	mannahla	
mapping	mappable	
Read and	Readable and writable	
write	Readable and writable	

properties	
Defaults	0
set range	-2147483647~2147483647
Detailed	Set the target location, the unit is the user location unit
Description	

Contour speed 6081h

Contour spe	cu 000111	
indexes	6081h	
name	Contour speed	
Object type	Variables	
Data type	unsigned 32 bit	
PDO	manushla	
mapping	mappable	
Read and		
write	Readable and writable	
properties		
Defaults	10000	
set range	0~4294967295	
Detailed	Set the contour speed in contour position mode, the unit is user	
Description	position unit/second	

Acceleration time 6083h

indexes	6083h	
name	Acceleration time (ms)	
Object type	Variables	
Data type	unsigned 32 bit	
PDO	mannahla	
mapping	mappable	
Read and	Readable and writable	
write		
properties		
Defaults	500	
set range	0~4294967295	
Detailed	Sat the appalaration time in contain position made the unit is me	
Description	Set the acceleration time in contour position mode, the unit is ms	

Deceleration time 6084h

Deteries action time 600 in		
indexes	6084h	
name	Deceleration time (ms)	
Object type	Variables	
Data type	unsigned 32 bit	

PDO	mappable	
mapping	шарраогс	
Read and		
write	Readable and writable	
properties		
Defaults	500	
set range	0~4294967295	
Detailed	Sat the decoloration time in contay manition made the varities made	
Description	Set the deceleration time in contour position mode, the unit is ms	

Position window 6067h

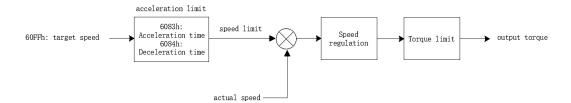
indexes	6067h
name	position window
Object type	Variables
Data type	unsigned 32 bit
PDO	mappable
mapping	
Read and	Readable and writable
write	
properties	
Defaults	10
set range	0~4294967295
Detailed	Location window, in user location units. When the position error
Description	is smaller than the position window and lasts for the position
	window time, the position arrival signal is output.

Position window time 6068h

indexes	6068h
name	Position window time (ms)
Object type	Variables
Data type	unsigned 16 bits
PDO	mappable
mapping	
Read and	Readable and writable
write	
properties	
Defaults	10
set range	0~65535
Detailed	Location window time, in ms. When the position error is smaller
Description	than the position window and lasts for the position window time,
	the position arrival signal is output.

Maximum tracking error 6065h

indexes	6065h	
name	Maximum tracking error	
Object type	Variables	
Data type	unsigned 32 bit	
PDO	mannahla	
mapping	mappable	
Read and		
write	Readable and writable	
properties		
Defaults	30000	
set range	0~4294967295	
Detailed	Maximover tracking amon in vacor recition voits	
Description	Maximum tracking error, in user position units	


Real-time position command 6062h

	Real-time position command 0002n	
indexes	6062h	
name	real time position command	
Object type	Variables	
Data type	Signed 32-bit	
PDO	man a bla	
mapping	mappable	
Read and		
write	read-only	
properties		
Defaults	-	
set range	-2147483647~2147483647	
Detailed	Pool time location command in year location units	
Description	Real-time location command, in user location units	

13.5 Contour speed mode

13.5.1 Contour velocity mode implementation block diagram

The contour speed mode is a control mode with the motor speed as the control target, and is often used for the main shaft dragging. The implementation of the speed mode is shown in the figure below.

After passing the given speed of 60FFh, it is input into the acceleration and deceleration limit link, and the actual given speed command is output. The speed command is subtracted from the actual speed to obtain the speed error, the speed error is adjusted, and the torque is finally output.

13.5.2 Contour speed mode setting process

- 1) Set the operating mode 6060h=3
- 2 Set target speed to 60FFh; when P08.42=0, the unit of this value is user unit/S
- 3 Set the acceleration and deceleration time 6083h, 6084h, the value is the time (ms) required for the motor to go from 0rpm to the rated speed. The actual acceleration time is calculated as follows.

Actual acceleration and deceleration time

$$= \frac{\text{Speed given difference}}{\text{Rated speed}} \times \text{Acceleration and deceleration time}$$

- (4) Set 6040h to 6->7->15 in turn
- (5) Get the servo status 6041h

13.5.3 Contour speed mode status output

goal reached

When the absolute value of the difference between the target speed 60FFh and the actual speed 606Ch is smaller than the speed window 606Dh and lasts for the speed window time 606Eh, the target arrival signal is output, and the bit 10 of 6041h is set to 1, otherwise it is cleared.

Zero speed output

When the absolute value of the actual speed 606Ch is less than the speed threshold 606Fh, the zero-speed signal is output, and the bit12 of 6041h is set to 1, otherwise it is cleared.

13.5.4 Contour speed mode related objects

Target speed 60FFh

indexes	60FFh
name	target speed

Object type	Variables
Data type	Signed 32-bit
PDO mapping	mappable
Read and	
write	Readable and writable
properties	
Defaults	0
set range	-2147483647~2147483647
Detailed	set target speed
Description	When P08.42=0, the value unit is user unit/S,

Speed window 606Dh

_	Special William Woods		
indexes	606Dh		
name	speed window		
Object type	Variables		
Data type	Signed 16-bit		
PDO	mannahla		
mapping	mappable		
Read and			
write	Readable and writable		
properties			
Defaults	100		
set range	0~32767		
Detailed	Speed window wait 0.1 mag		
Description	Speed window, unit 0.1rpm		

Speed window time 606Eh

indexes	606Eh
name	speed window time
Object type	Variables
Data type	unsigned 16-bit
PDO	
mapping	mappable
Read and	
write	Readable and writable
properties	
Defaults	10
set range	0~65535
Detailed	Speed window time wait, mg
Description	Speed window time, unit: ms

Speed threshold 606Fh

Specu tili esi	
indexes	606Fh
name	speed threshold
Object type	Variables
Data type	unsigned 16-bit
PDO	
mapping	mappable
Read and	
write	Readable and writable
properties	
Defaults	10
set range	0~65535
Detailed	So and though all the soult is 0.1 mm.
Description	Speed threshold, the unit is 0.1rpm

13.5.5 Zero return mode setting process

Note: If it is an absolute encoder, and the Z point is used as the encoder zero point, please pre-set P03.79 - how many pulses the absolute encoder outputs per week.

- 1) Set 6060h=6 first
- 2 Set homing offset 607Ch, its unit is user position unit.
- (3) Set the zero return method 6098h
- (4) Set the speed of finding the origin switch 6099h 01, the unit is rpm
- (5) Set the speed of finding Z point 6099h 02, its unit is rpm
- 6 Set the return-to-zero acceleration and deceleration time to 609Ah, which is the time (ms) required for the motor to go from 0rpm to the rated speed. The actual acceleration time is calculated as follows.

Actual acceleration and deceleration time

 $= \frac{\text{Speed given difference}}{\text{Rated speed}} \times \text{Acceleration and deceleration time}$

- 7 Set the control word 6040h to 6->7->15->31 in sequence, and execute the zero return
 - (8) Read status word 6041h

13.5.6 Home mode related status output

Return to zero complete signal

Bit12 of 6041h shows the zero return completion signal. When the zero return signal is triggered, the flag bit is cleared, and the flag bit is set to 1 after the zero return is completed.

target arrival signal

When the bit10 of 6041h is the target arrival signal, when the Halt of 6040h is 1, that is,

when it pauses to return to zero, if the speed is 0, the flag is set to 1, otherwise it is cleared. When the Halt of 6040h is 0, the zero return completion signal is 1, and the target arrival signal is also 1, otherwise it is 0.

13.5.7 Return to zero mode related objects

Return to zero method 6098h

	To method doyon
indexes	6098h
name	Return to zero method
Object type	Variables
Data type	Signed 8-bit
PDO	mannahla
mapping	mappable
Read and	
write	Readable and writable
properties	
Defaults	0
set range	0-35
Detailed	Set notions to gone meethed
Description	Set return to zero method

Zero return speed 6099h

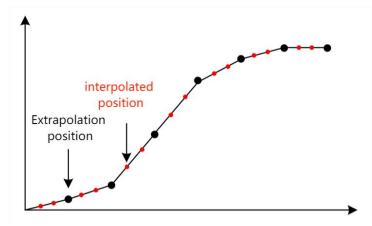
indexes	6099h
name	Zero return speed
Object type	array object
Data type	unsigned 32 bit
PDO mapping	mappable
Read and write	Readable and writable
properties	readable and without

index_sub-index	6099h_00
name	6099h Number of valid sub-indexes
Data type	unsigned 32 bit
PDO mapping	not mappable
Read and write properties	read-only
Defaults	2

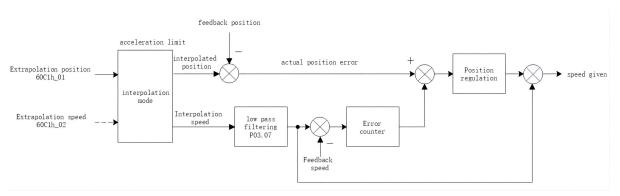
index_sub-index	6099h_01
name	find the speed (rpm) of the origin switch
Data type	unsigned 32 bit
PDO mapping	mappable

Read and write properties	Readable and writable
Defaults	P03.53

index_sub-index	6099h_02
name	Speed to find Z point (rpm)
Data type	unsigned 32 bit
PDO mapping	mappable
Read and write properties	Readable and writable
Defaults	P03.54


Return to zero acceleration and deceleration time 609Ah

indexes	609Ah	
name	Return to zero acceleration and deceleration time	
Object type	Variables	
Data type	unsigned 32 bit	
PDO	mannahla	
mapping	mappable	
Read and		
write	Readable and writable	
properties		
Defaults	500	
set range	0~4294967295	
Detailed	Zoro return acceleration and deceleration time units me	
Description	Zero return acceleration and deceleration time, unit: ms	


13.6 Interpolated position mode

13.6.1 Interpolation position mode implementation block diagram

Interpolation position mode means that the host computer periodically sends position commands (or position + speed commands) to the servo drive through TPDO, and the servo drive moves according to the sent position commands (or position + speed commands). The position command sent by the host computer to the servo is called the extrapolation position command, and the servo will further interpolate according to the extrapolation position to obtain the interpolated position command. As shown below.

The interpolation position mode is implemented according to the following control block diagram.

VEC bus type servo provides two interpolation algorithms, which are set by interpolation sub-mode 60C0h. When 60C0h is set to 0, the master only needs to send the extrapolated position to the servo through TPDO. When setting 60C0h to -1, the master station needs to send the extrapolation position to the servo through TPDO, and also needs to send the extrapolation speed to the servo. The unit of the extrapolation position is the user position unit, and the unit of the extrapolation speed is the difference between the current extrapolation position and the previous extrapolation position.

13.6.2 Interpolation position mode setting flow

- 1 Set operation mode 6060h=7 as interpolation position mode
- ② Set the interpolation sub-mode 60C0h=0 (without extrapolation speed) or 60C0h=-1 (with extrapolation speed)
- ③ Set the communication period to 1006h, the unit is us, generally set to a multiple of 1000, such as 1000us, 4000us, 5000us and so on.
 - (4) Set the communication parameters of RPDO1 of the servo drive through SDO 1400h
 - (5) Mainly set the CANID in 1400h_01 and the receiving type of 1400h_02.
 - (6) Set the mapping parameter of RPDO1 of the servo drive through SDO 1600h
- 7 If 60C0h=0 (without extrapolation speed), RPDO1 needs to be mapped according to the following structure. is 1600h_01=60C10120h;1600h_02=60400010h; 1600h_00=2;

byte 0~byte 3		byte 4~byte 5
Extrapolation	position	Control word 6040h

60C1h 01	
60C1h U1	

If 60C0h=-1 (with extrapolation speed), RPDO1 needs to be mapped according to the following structure. That is

1600h_01=60C10120h;1600h_02=60C10210h;1600h_03=60400010h; 1600h_00=2;

byte 0~byte 3		byte 4~byte 5		byte 6~byte 7
Extrapolation	position	Extrapolation	Speed	Control word 6040h
60C1h_01		60C1h_02		

(1) Start the node through the NMT command, start communication, and the master station starts sending commands to the servo periodically.

13.6.3 Interpolation position mode status output

goal reached

In the interpolation position mode, the output target arrival flag is supported, which is stored in bit10 of the status word 6041h. When the real position error is less than the position window 6067h, and the duration window is 6068h, it is considered that the target has arrived, and bit10 of 6041h is set, otherwise it is cleared.

location tracking error

In the interpolation position mode, it supports the output of the position tracking error flag. When the actual position error is greater than the maximum tracking position error of 6065h, the position tracking error flag (bit13 of 6041h) is set.

13.6.4 Interpolated Position Mode Related Objects

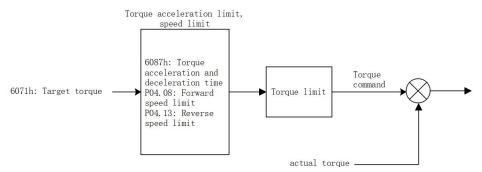
Extrapolated data 60C1h

indexes	60C1h	
name	Extrapolate data	
Object type	struct object	
Data type	unsigned 32 bit	
PDO mapping	mappable	
Read and write	Readable and writable	
properties		

index_sub-index	60C1h_00
name	60C1h Number of valid sub-indexes
Data type	unsigned 32 bit
PDO mapping	not mappable
Read and write properties	read-only
Defaults	2

index_sub-index	60C1h_01
name	Extrapolation position
Data type	Signed 32-bit
PDO mapping	mappable
Read and write properties	Readable and writable
Defaults	0

index_sub-index	60C1h_02	
name	Extrapolation speed (difference between two adjacent	
	extrapolation positions)	
Data type	Signed 16-bit	
PDO mapping	mappable	
Read and write	D 111 1 111	
properties	Readable and writable	
Defaults	0	


Interpolation sub mode setting 60C0h

indexes	60C0h
name	Interpolation sub mode
Object type	Variables
Data type	Signed 16-bit
PDO mapping	mappable
Read and write properties	Readable and writable
Defaults	0
set range	-32767~32767
Detailed	0: Interpolation mode that only requires extrapolation of
Description	position, no extrapolation of velocity
	-1: Interpolation modes that require both extrapolated position
	and extrapolated speed
	It should be noted that 60C0 must match the mapping data
	of RPDO, that is, if 60C0 is set to 0, RPDO cannot map the
	extrapolation speed; if 60C0 is set to -1, then RPDO must
	map the extrapolation speed. The settings of the PDO
	mapping parameters and the settings of 60C0 take effect
	when the bus is started.

13.7 Contour torque mode

13.7.1 Contour torque mode implementation block diagram

The contour torque mode is a control mode with the motor output torque as the control target, and is often used for tension control. The implementation of torque mode is shown in the figure below.

After the torque is given through 6071h, it is input to the acceleration and deceleration limit link, and then after the speed limit and torque limit, the actual torque is output.

13.7.2 Profile torque mode setting process

- ① Set operating mode 6060h=4
- ② Set the target torque 6071h; the unit of this object is one thousandth of the rated torque
- 3 Set the acceleration and deceleration time to 6087h, which is the time (ms) required for the motor to go from 0 to rated torque. The actual acceleration time is calculated as follows.

Actual acceleration and deceleration time

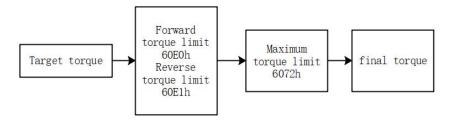
$$= \frac{\text{Torque reference difference}}{\text{Rated torque}} \times \text{Acceleration and deceleration time}$$

- 4) Set 6040h to 6->7->15 in turn
- (5) get servo status 6041h

13.7.3 Contour torque mode related objects

Target torque 6071h

· · · · · · · · · · · · · · · · · · ·		
indexes	6071h	
name	target torque	
Object type	Variables	
Data type	Signed 16-bit	


PDO	mappable	
mapping		
Read and		
write	Readable and writable	
properties		
Defaults	0	
set range	-32767~32767	
Detailed	Sat target targue unit 9/ retad targue	
Description	Set target torque, unit % rated torque	

Target torque acceleration and deceleration time 6087h

indexes	6087h	
name	Target torque acceleration/deceleration time	
Object type	Variables	
Data type	unsigned 32 bit	
PDO	1.1	
mapping	mappable	
Read and		
write	Readable and writable	
properties		
Defaults	500	
set range	0~4294967295	
Detailed	Toward tawaya and anotion /decoloration time (ma)	
Description	Target torque acceleration/deceleration time (ms)	

13.8 Torque limit

The torque limit method of all control modes of VEC bus type servo is the same, and the following objects are used to limit the torque.

Forward torque limit and reverse torque limit mean that when the target torque value is greater than the forward torque value, the forward torque limit value is output. When the target torque is smaller than the negative reverse torque value, the negative reverse torque value is output.

The maximum torque limit means that when the target torque is greater than the maximum torque limit value, the maximum torque limit value is output. When the target torque is smaller than the negative maximum torque limit value, the negative maximum

torque limit value is output.

When powered on, the forward torque limit value, reverse torque limit value and maximum torque limit value are all initialized to the value of bit P05.13. At the same time, it will also be limited by the motor peak torque P00.24*P00.01/P01.03.

13.8.1 The related objects are as follows

Forward torque limit 60E0h

1 01 Ward to	que mint oveon	
indexes	60E0h	
name	Forward torque limit	
Object type	Variables	
Data type	Signed 16-bit	
PDO	mannahla	
mapping	mappable	
Read and		
write	read-only	
properties		
Defaults	Initialized to the value of P05.13 after power-on	
set range	-32767~32767	
Detailed	Forward torque limit unit 0 10/	
Description	Forward torque limit, unit 0.1%	

Reverse torque limit 60E1h

indexes	60E1h
name	Reverse torque limit
Object type	Variables
Data type	Signed 16-bit
PDO	mannahla
mapping	mappable
Read and	
write	read-only
properties	
Defaults	Power-on initialization to the value of P05.13
set range	-32767~32767
Detailed	Payarsa targua limit unit 0 19/
Description	Reverse torque limit, unit 0.1%

Maximum torque 6072h

Maximum u	Hque 0072H
indexes	6072h
name	maximum torque
Object type	Variables
Data type	Signed 16-bit
PDO	mappable

mapping		
Read and		
write	read-only	
properties		
Defaults	Power-on is the value of P05.13, and is limited by	
Delaults	P00.24*P00.01/P01.03 at the same time	
set range	-32767~32767	
Detailed	Maximum torque, unit 0.1%	
Description		

Version Update Record

release date	Change description	version
2022-03-10	The naming of the servo series is updated to VCXXX, the version	1.01
	number is added, and the calibration manual	
2022-03-16	Calibration Manual	1.02
2022-04-11	Split the manual to generate the VC310 servo manual	1.03
2022-07-06	Updated P13.92 parameter description	1.04
2022-11-25	Add description of dynamic braking function	1.05
2022-12-21	Added STO function description	1.06

深圳市威科达科技有限公司

SHENZHEN VECTOR TCHNOLOGY CO.LTD

地址:深圳市南山区留仙大道创客小镇13栋

电话: 0755-26610452

研发大楼:广东省东莞市松山湖高新技术产业开发区南山路一号中集智谷12栋

电话: 0769-22235716

关注公众号